Skip to main content

A python package for attacking Russian NLP models

Project description

Robustness Evaluation of Pre-trained Language Models in the Russian Language

This is a repo with experiments for Robustness Evaluation of Pre-trained Language Models in the Russian Language and a tool ru_attacker for attacking Russian NLP models

Installation

pip install ru_attacker

Usage example

Set model

>>> from ru_attacker.models import RobertaModel
>>> roberta_checkpoints = "Roberta_checkpoints"
>>> ruRoberta = RobertaModel(roberta_checkpoints)

Set dataset

>>> from ru_attacker.models.set_dataset import get_data
>>> data_dir = "TERRa/val.jsonl" 
>>> data = get_data(data_dir)

Set attack

You have to define transformation, goal_function and type_perturbation. constraints and search_method are optional

>>> from ru_attacker.attacks.transformations import BackTranslation  # transformation
>>> from ru_attacker.attacks.goal_function import LabelPreserving  # goal function
>>> from ru_attacker.attacks.constraints import GrammarAcceptability, SemanticSimilarity  # constraints
>>> from ru_attacker.attacks.search_method import GreedySearch  # search method
>>> from ru_attacker.attacks import Attack  # attack wrapper
>>> backtranslation = Attack(
        transformation=BackTranslation(languages=["en", "fr", "de"]),  # you can set languages manually or use the default ones
        goal_function=LabelPreserving(),
        type_perturbation="hypothesis",  # to what part perturbation is applied {"hypothesis", "premise"}
        constraints=[GrammarAcceptability(), SemanticSimilarity()],
        search_method=GreedySearch()
    )

Attack model and view results

>>> results = backtranslation.attack(ruRoberta, data)
                  [Succeeded / Failed / Skipped / Total] 0 / 1 / 0 / 1:
                  entailment --> entailment
                  original premise: """Решение носит символический характер, так как взыскать компенсацию практически невозможно"", - отмечается в сообщении."
                  original hypothesis: Взыскать компенсацию не получится.

                  transformed: Компенсации не будет.

                  

                  [Succeeded / Failed / Skipped / Total] 1 / 1 / 0 / 2:
                  entailment --> not_entailment
                  original premise: Об этом вечером во вторник, 17 января, сообщила пресс-служба Спасательного департамента, отметив, что немецкую противотанковую мину Tellermine 42 обнаружили в на улице Кеэвисе в ходе земляных работ. Спасатели эвакуировали жителей окрестных домов, офисов и складских помещений. Уничтожать мину на месте не стали, поскольку это угрожало повреждению трассы трубопровода.
                  original hypothesis: На улице Кеэвисе жителей эвакуировали из-за мины.

                  transformed: На улице Касери эвакуировали жителей из мин.

Convert results to DataFrame

>>> import pandas as pd
>>> dataframe = pd.DataFrame(results)

Here is Tutorial

Experiments

All the data used in experiments and the results are in data folder (TERRa and results correspondingly).

All experiments can be reproduced in Experiments.ipynb.

Models checkpoints are available via:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ru_attacker-0.0.5.tar.gz (14.7 kB view hashes)

Uploaded Source

Built Distribution

ru_attacker-0.0.5-py3-none-any.whl (27.9 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page