Skip to main content

"an ML library for model development and governance"

Project description

rubicon-ml

Test Package Publish Package Publish Docs edgetest

Conda Version PyPi Version Binder

Purpose

rubicon-ml is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a repeatable and searchable way. Its git integration associates these inputs and outputs directly with the model code that produced them to ensure full auditability and reproducibility for both developers and stakeholders alike. While experimenting, the dashboard makes it easy to explore, filter, visualize, and share recorded work.

p.s. If you're looking for Rubicon, the Java/ObjC Python bridge, visit this instead.


Components

rubicon-ml is composed of three parts:

  • A Python library for storing and retrieving model inputs, outputs, and analyses to filesystems that’s powered by fsspec
  • A dashboard for exploring, comparing, and visualizing logged data built with dash
  • And a process for sharing a selected subset of logged data with collaborators or reviewers that leverages intake

Workflow

Use rubicon_ml to capture model inputs and outputs over time. It can be easily integrated into existing Python models or pipelines and supports both concurrent logging (so multiple experiments can be logged in parallel) and asynchronous communication with S3 (so network reads and writes won’t block).

Meanwhile, periodically review the logged data within the Rubicon dashboard to steer the model tweaking process in the right direction. The dashboard lets you quickly spot trends by exploring and filtering your logged results and visualizes how the model inputs impacted the model outputs.

When the model is ready for review, Rubicon makes it easy to share specific subsets of the data with model reviewers and stakeholders, giving them the context necessary for a complete model review and approval.

Use

Check out the interactive notebooks in this Binder to try rubicon_ml for yourself.

Here's a simple example:

from rubicon_ml import Rubicon

rubicon = Rubicon(
    persistence="filesystem", root_dir="/rubicon-root", auto_git_enabled=True
)

project = rubicon.create_project(
    "Hello World", description="Using rubicon to track model results over time."
)

experiment = project.log_experiment(
    training_metadata=[SklearnTrainingMetadata("sklearn.datasets", "my-data-set")],
    model_name="My Model Name",
    tags=["my_model_name"],
)

experiment.log_parameter("n_estimators", n_estimators)
experiment.log_parameter("n_features", n_features)
experiment.log_parameter("random_state", random_state)

accuracy = rfc.score(X_test, y_test)
experiment.log_metric("accuracy", accuracy)

Then explore the project by running the dashboard:

rubicon_ml ui --root-dir /rubicon-root

Documentation

For a full overview, visit the docs. If you have suggestions or find a bug, please open an issue.

Install

The Python library is available on Conda Forge via conda and PyPi via pip.

conda config --add channels conda-forge
conda install rubicon-ml

or

pip install rubicon-ml

Develop

The project uses conda to manage environments. First, install conda. Then use conda to setup a development environment:

conda env create -f environment.yml
conda activate rubicon-ml-dev

Finally, install rubicon_ml locally into the newly created environment.

pip install -e ".[all]"

Testing

The tests are separated into unit and integration tests. They can be run directly in the activated dev environment via pytest tests/unit or pytest tests/integration. Or by simply running pytest to execute all of them.

Note: some integration tests are intentionally marked to control when they are run (i.e. not during CICD). These tests include:

  • Integration tests that write to physical filesystems - local and S3. Local files will be written to ./test-rubicon relative to where the tests are run. An S3 path must also be provided to run these tests. By default, these tests are disabled. To enable them, run:

    pytest -m "write_files" --s3-path "s3://my-bucket/my-key"
    
  • Integration tests that run Jupyter notebooks. These tests are a bit slower than the rest of the tests in the suite as they need to launch Jupyter servers. By default, they are enabled. To disable them, run:

    pytest -m "not run_notebooks and not write_files"
    

    Note: When simply running pytest, -m "not write_files" is the default. So, we need to also apply it when disabling notebook tests.

Code Formatting

Install and configure pre-commit to automatically run black, flake8, and isort during commits:

Now pre-commit will run automatically on git commit and will ensure consistent code format throughout the project. You can format without committing via pre-commit run or skip these checks with git commit --no-verify.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rubicon-ml-0.9.2.tar.gz (109.7 kB view details)

Uploaded Source

Built Distribution

rubicon_ml-0.9.2-py3-none-any.whl (124.2 kB view details)

Uploaded Python 3

File details

Details for the file rubicon-ml-0.9.2.tar.gz.

File metadata

  • Download URL: rubicon-ml-0.9.2.tar.gz
  • Upload date:
  • Size: 109.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.18

File hashes

Hashes for rubicon-ml-0.9.2.tar.gz
Algorithm Hash digest
SHA256 4fdfde17ac8bd5dfed3931cc36039bcb93e985960f4740f4e48afc30f7068e0d
MD5 69993fa3fc1629667fdbbd9d0044917f
BLAKE2b-256 6a2ed83b84e6d7be87a3be3c6616f329971ede5ea8c7d1fd98dde7f8204f632c

See more details on using hashes here.

File details

Details for the file rubicon_ml-0.9.2-py3-none-any.whl.

File metadata

  • Download URL: rubicon_ml-0.9.2-py3-none-any.whl
  • Upload date:
  • Size: 124.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.18

File hashes

Hashes for rubicon_ml-0.9.2-py3-none-any.whl
Algorithm Hash digest
SHA256 834ad8dd59e8eac5ef8294005283a91db89945a5e0abcafec292a14660e99be4
MD5 ac50f15aeb267e0730c34894d0faa68c
BLAKE2b-256 8bd5c5a967e34ff24e18aaa9fdcab95b0f1e2b9323c21e1bc3d1b64550eb1ce9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page