Skip to main content

OpenAI Gym environments for various twisty puzzles

Project description

RubiksCubeGym

An OpenAI Gym environment for various twisty puzzles.

PyPI PyPI - Wheel PyPI - License PyPI - Downloads

Currently available environments:

  • 2x2x2 Pocket Rubik's Cube
  • Pyraminx
  • Skewb

Citation

@article{hukmani2021solving,
  title={Solving Twisty Puzzles Using Parallel Q-learning.},
  author={Hukmani, Kavish and Kolekar, Sucheta and Vobugari, Sreekumar},
  journal={Engineering Letters},
  volume={29},
  number={4},
  year={2021}
}

Details:

2x2x2 Pocket Rubik's Cube

Mapping of tiles

Action Space Discrete(3)
Observation Space Discrete(3674160)
Actions F, R, U
Rewards (-inf, 100]
Max steps 250
Reward Types Base, Layer By Layer Method, Ortega Method
Render Modes 'human', 'rgb_array', 'ansi'

Pyraminx without tips

Mapping of tiles

Action Space Discrete(4)
Observation Space Discrete(933120)
Actions L, R, U, B
Rewards (-inf, 100]
Max steps 250
Reward Types Base, Layer by Layer Method
Render Modes 'human', 'rgb_array', 'ansi'

Skewb

Mapping of tiles

Action Space Discrete(4)
Observation Space Discrete(3149280)
Actions L, R, U, B
Rewards (-inf, 100]
Max steps 250
Reward Types Base, Sarah's Method(Advanced)
Render Modes 'human', 'rgb_array', 'ansi'

Installation

Via PyPI

pip install rubiks-cube-gym

Or build from source

git clone https://github.com/DoubleGremlin181/RubiksCubeGym.git
cd RubiksCubeGym
pip install -e .

Requirements

  • gym
  • numpy
  • opencv-python
  • wget

Scrambling

You can pass the scramble as a parameter for the reset function self.reset(scramble="R U R' U'")

The scramble should follow the WCA Notation

Example

import gym  
import rubiks_cube_gym  
  
env = gym.make('rubiks-cube-222-lbl-v0')  
env.reset(scramble="R U R' U' R' F R2 U' R' U' R U R' F'")  
  
for _ in range(4):  
    env.render()  
    print(env.step(1))  
env.render(render_time=0)  
env.close()

(3178426, -26, False, {'cube': array([ 0,  9,  2, 15,  4,  5,  6, 21, 16, 10,  1, 11, 12, 13, 14, 23, 17, 7,  3, 19, 20, 18, 22,  8], dtype=uint8), 'cube_reduced': 'WRWGOOGYRBWBOOGYRGWBYBYR'})
(1542962, -1, False, {'cube': array([ 0, 21,  2, 23,  4,  5,  6, 18, 17, 16, 15, 11, 12, 13, 14,  8,  7, 10,  9, 19, 20,  3, 22,  1], dtype=uint8), 'cube_reduced': 'WYWYOOGBRRGBOOGRGBRBYWYW'})
(1682970, -1, False, {'cube': array([ 0, 18,  2,  8,  4,  5,  6,  3,  7, 17, 23, 11, 12, 13, 14,  1, 10, 16, 21, 19, 20,  9, 22, 15], dtype=uint8), 'cube_reduced': 'WBWROOGWGRYBOOGWBRYBYRYG'})
(2220193, 25, False, {'cube': array([ 0,  3,  2,  1,  4,  5,  6,  9, 10,  7,  8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], dtype=uint8), 'cube_reduced': 'WWWWOOGRBGRBOOGGRRBBYYYY'})

Output

You can find my implementation and results using Parallel Q-learning here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rubiks_cube_gym-0.5.2.tar.gz (9.2 kB view details)

Uploaded Source

Built Distribution

rubiks_cube_gym-0.5.2-py3-none-any.whl (13.6 kB view details)

Uploaded Python 3

File details

Details for the file rubiks_cube_gym-0.5.2.tar.gz.

File metadata

  • Download URL: rubiks_cube_gym-0.5.2.tar.gz
  • Upload date:
  • Size: 9.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.13

File hashes

Hashes for rubiks_cube_gym-0.5.2.tar.gz
Algorithm Hash digest
SHA256 fedfde7dcd24c4c333342415648a4b87f3b94c6ac9096c2f3621930c526c08da
MD5 eba7f8424110ea340c7124af2d0ad8b5
BLAKE2b-256 6d3e5bccf8682617630b432574c9e087b6096e1a0f17fca8ce6ceebb48a496d3

See more details on using hashes here.

File details

Details for the file rubiks_cube_gym-0.5.2-py3-none-any.whl.

File metadata

File hashes

Hashes for rubiks_cube_gym-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 bf04565afa3b6522141dd70f1be611a7767b994c4a51f27d3e44bd5f2d0961cc
MD5 c952517f590cadd9043c7c9ecb7c14f8
BLAKE2b-256 5c864c838482fe0d17237f327571d61c4cf78be19bf6e2fca92652d715c4babb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page