Skip to main content

A set of scripts for running BRER simulations using gmxapi.

Project description

run_brer

Build and test Documentation

This project is hosted in a git repository at https://github.com/kassonlab/run_brer

Project documentation is available in the repository or at https://kassonlab.github.io/run_brer/.

The run_brer Python package provides a set of scripts for running BRER simulations using gmxapi. Details of this method may be found in:

Hays, J. M., Cafiso, D. S., & Kasson, P. M. Hybrid Refinement of Heterogeneous Conformational Ensembles using Spectroscopic Data. The Journal of Physical Chemistry Letters. DOI: 10.1021/acs.jpclett.9b01407

Installation

Requirements

If you're going to use a pip or a conda environment, you'll need:

Otherwise, you can just use a Singularity container!

Singularity

By far the easiest option!

If you have the latest and greatest Singuarity (v > 3), you can pull the container from the cloud repository:

singularity pull library://kassonlab/default/brer:latest

For instructions on using the container, please see the singularity-brer repository.

Conda environment

I suggest running this in a conda environment rather than pip install . The following conda command will handle all the gmxapi and sample_restraint python dependencies, as well as the ones for this repository.

  1. conda create -n BRER numpy scipy networkx setuptools mpi4py cmake

    If you want to run the tests, then install pytest as well.

  2. Source the environment and then pip install:

source activate BRER
git clone https://github.com/kassonlab/run_brer.git
cd run_brer
pip install .

Running BRER

Launching a single ensemble member.

An example script, run.py , is provided for ensemble simulations.

Let's work through it piece by piece.

#!/usr/bin/env python

"""
Example run script
for BRER simulations
"""

import run_brer.run_config as rc
import sys

The import run_brer.run_config statement imports a RunConfig object, which handles the following things for a single ensemble member:

  1. Initializing/setting up parameters for the BRER run.
  2. Launching the run.

Then we provide some files and directory paths to the RunConfig object.

init = {
    'tpr': '/home/jennifer/Git/run_brer/tests/syx.tpr',
    'ensemble_dir': '/home/jennifer/test-brer',
    'ensemble_num': 5,
    'pairs_json': '/home/jennifer/Git/run_brer/tests/pair_data.json'
}

config = rc.RunConfig(**init)

In order to run a BRER simulation, we need to provide :

  1. a tpr (compatible with GROMACS 2019).
  2. The path to our ensemble. This directory should contain subdirectories of the form mem_<my ensemble number>
  3. The ensemble number. This is an integer used to identify which ensemble member we are running and thus, the subdirectory in which we will be running our simulations.
  4. The path to the DEER metadata. Please see the example json in this repository: run_brer/data/pair_data.json

Finally, we launch the run!

config.run()

You may change various parameters before launching the run using config.set(**kwargs) . For example:

config = rc.RunConfig(**init)
config.set(A=100)
config.run()

resets the energy constant A to 100 kcal/mol/nm^2 before launching a run.

Launching an ensemble

Right now, the way to launch an ensemble is to launch multiple jobs. We hope to soon use the gmxapi features that allow a user to launch many ensemble members in one job.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

run_brer-2.0.0b2.tar.gz (5.2 MB view details)

Uploaded Source

Built Distribution

run_brer-2.0.0b2-py3-none-any.whl (5.2 MB view details)

Uploaded Python 3

File details

Details for the file run_brer-2.0.0b2.tar.gz.

File metadata

  • Download URL: run_brer-2.0.0b2.tar.gz
  • Upload date:
  • Size: 5.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.7

File hashes

Hashes for run_brer-2.0.0b2.tar.gz
Algorithm Hash digest
SHA256 81b51257b60f8cd81be8305fb705ae92aff37d66bef597407d9c4a48b836157f
MD5 b5fd3c4c9d7c2bb287ad399d46f0927e
BLAKE2b-256 216904253adaedfa5d1c62360b1826a78f6f568b2d24b819e82bb4ca44eabe6d

See more details on using hashes here.

File details

Details for the file run_brer-2.0.0b2-py3-none-any.whl.

File metadata

  • Download URL: run_brer-2.0.0b2-py3-none-any.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.7

File hashes

Hashes for run_brer-2.0.0b2-py3-none-any.whl
Algorithm Hash digest
SHA256 84f71265db070d11209d6a827a1ba745be363b866bad9b035d4e0443e449fcae
MD5 1b72ca59865c5f25fb48698b165e1d76
BLAKE2b-256 88910a06a558fecbce67cec4c6d227d84214ad386dd9e19bbeedab4ecc897af4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page