Package for training and evaluating neural network models made using pytorch
Project description
run-torch-model
Simple program to run a pytorch compatible model. Includes a tools function which has support for creating dataloader objects required for training/testing/validation.
Requirements
- torch
- torchmetrics
- scikit-learn
Install
Install using pip:
pip install run-torch-model
Usage
Use create_dataloader to initiate datasets for training and testing:
from run_torch_model import create_dataloader
dataloader_train, dataloader_test = create_dataloader(features=features,
targets=targets,
batch_size=batch_size,
train_size=train_size,
test_size=test_size)
To run a model we define the optimizer, its arguments and a criterion, feed into the class and perform a call for training.
import torch
from run_torch_model import RunTorchNN
optimizer = 'torch.optim.Adam' # Must be string, if CUDA we initiate the optimizer after calling .cuda for speed-up
optimizer_args = {'lr': 0.001'} # Initialize some arguments for the optimizer
criterion = torch.nn.MSELoss()
run_model = RunTorchNN(model, # Some pytorch model
epochs=100,
optimizer=optimizer,
optimizer_args=optimizer_args,
dataloaders=(dataloader_train, dataloader_test),
criterion=criterion)
run_model() # Executes the training
To fetch metrics:
R2 = run_model.get_r2score()
loss = run_model.get_average_loss()
To evaluate the trained model on a different set of features:
predictions, loss = run_model.predict(new_features)
To evaluate the model on a validation set:
loss, r2 = run_model.evaluate(dataloader_validation)
predictions = run_model.get_predictions() # To get predictions, if necessary
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file run_torch_model-1.0.2.tar.gz
.
File metadata
- Download URL: run_torch_model-1.0.2.tar.gz
- Upload date:
- Size: 7.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.2.1 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 87a9c052970b00f940fcfa17c4acd5c86f447330678f8f457d1a070bb7130d11 |
|
MD5 | 25af0fbc61f711e053fbb1b9ab965950 |
|
BLAKE2b-256 | c70cc347c314dcc59d48e2dc60e1ade2d7a0d77f62afd6ec7710180c46ea6402 |
File details
Details for the file run_torch_model-1.0.2-py3-none-any.whl
.
File metadata
- Download URL: run_torch_model-1.0.2-py3-none-any.whl
- Upload date:
- Size: 8.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.2.1 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ca15c26bfcaddb4cbf57a49b233d0c62b6aee3553f916ff1be334149f2545875 |
|
MD5 | ed42aa88b5b98c05d347dbda9af68be9 |
|
BLAKE2b-256 | 5f1fac9987bafdbe16ff5b3321d826cf2b97b16eddc3f1af6b1a073213420b97 |