Skip to main content

Distributed event processing for Python based on Redis Streams

Project description

Runnel

pyversions LGPLv3 version

Distributed event processing for Python based on Redis Streams.

RunnelPy allows you to easily create scalable stream processors, which operate on partitions of event streams in Redis. RunnelPy takes care of assigning partitions to workers and acknowledging events automatically, so you can focus on your application logic.

Whereas traditional job queues do not provide ordering guarantees, RunnelPy is designed to process partitions of your event stream strictly in the order events are created.

Installation

pip install runnelpy

Basic Usage

from datetime import datetime

from runnelpy import App, Record

app = App(name="myapp", redis_url="redis://127.0.0.1")


# Specify event types using the Record class.
class Order(Record):
    order_id: int
    created_at: datetime
    amount: float


orders = app.stream("orders", record=Order, partition_by="order_id")


# Every 4 seconds, send an example record to the stream.
@app.timer(interval=4)
async def sender():
    await orders.send(Order(order_id=1, created_at=datetime.utcnow(), amount=9.99))


# Iterate over a continuous stream of events in your processors.
@app.processor(orders)
async def printer(events):
    async for order in events.records():
        print(f"processed {order.amount}")

Meanwhile, run the worker (assuming code in example.py and PYTHONPATH is set):

$ runnelpy worker example:app

Features

Designed to support a similar paradigm to Kafka Streams, but on top of Redis.

  • At least once processing semantics
  • Automatic partitioning of events by key
  • Each partition maintains strict ordering
  • Dynamic rebalance algorithm distributes partitions among workers on-the-fly
  • Support for nested Record types with custom serialisation and compression
  • Background tasks, including timers and cron-style scheduling
  • User-defined middleware for exception handling, e.g. dead-letter-queueing
  • A builtin batching mechanism to efficiently process events in bulk
  • A runnelpy[fast] bundle for C or Rust extension dependencies (uvloop, xxhash, orjson, lz4)

Documentation

Full documenation is available at https://runnelpy.dev.

Blog posts

Essays about this project or the technology it's using:

Local development

To run the test suite locally, clone the repo and install the optional deps (e.g. via poetry install -E fast). Make sure Redis is running on localhost at port 6379, then run pytest.

See also

For a traditional task queue that doesn't provide ordering guarantees, see our sister project Fennel.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

runnelpy-0.2.10.tar.gz (32.4 kB view details)

Uploaded Source

Built Distribution

runnelpy-0.2.10-py3-none-any.whl (41.7 kB view details)

Uploaded Python 3

File details

Details for the file runnelpy-0.2.10.tar.gz.

File metadata

  • Download URL: runnelpy-0.2.10.tar.gz
  • Upload date:
  • Size: 32.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.8.18 Linux/6.5.0-1025-azure

File hashes

Hashes for runnelpy-0.2.10.tar.gz
Algorithm Hash digest
SHA256 d567304bc1ca6d8af87a5f3876d6d2c8910a53782a504aabe30b8429107ee7c4
MD5 df2d0487a4c324ca6d01a147f010320e
BLAKE2b-256 9059b6ffd7031558318496db044174e455584a52553343d78ebfb976fb084a86

See more details on using hashes here.

File details

Details for the file runnelpy-0.2.10-py3-none-any.whl.

File metadata

  • Download URL: runnelpy-0.2.10-py3-none-any.whl
  • Upload date:
  • Size: 41.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.8.18 Linux/6.5.0-1025-azure

File hashes

Hashes for runnelpy-0.2.10-py3-none-any.whl
Algorithm Hash digest
SHA256 a060d36db09d8b499c6980674372fa8e036e73b6046556a52e08256fcf0441ec
MD5 21cc606c9abaf7f66fbdf3bd11deada9
BLAKE2b-256 49c985cee93b03853c672d1cdfbba7ad39c6a37bd7d3405041fdc34578c72e86

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page