Skip to main content

The Python Runware SDK is used to run image inference with the Runware API, powered by the Runware inference platform. It can be used to generate images with text-to-image and image-to-image. It also allows the use of an existing gallery of models or selecting any model or LoRA from the CivitAI gallery. The API also supports upscaling, background removal, inpainting and outpainting, and a series of other ControlNet models.

Project description

Python Runware SDK

The Python Runware SDK is used to run image inference with the Runware API, powered by the Runware inference platform. It can be used to generate images with text-to-image and image-to-image. It also allows the use of an existing gallery of models or selecting any model or LoRA from the CivitAI gallery. The API also supports upscaling, background removal, inpainting and outpainting, and a series of other ControlNet models.

Get API Access

To use the Python Runware SDK, you need to obtain an API key. Follow these steps to get API access:

  1. Create a free account with Runware.
  2. Once you have created an account, you will receive an API key and trial credits.

Important: Please keep your API key private and do not share it with anyone. Treat it as a sensitive credential.

Documentation

For detailed documentation and API reference, please visit the Runware Documentation or refer to the docs folder in the repository. The documentation provides comprehensive information about the available classes, methods, and parameters, along with code examples to help you get started with the Runware SDK Python.

Installation

To install the Python Runware SDK, use the following command:

pip install runware

Usage

Before using the Python Runware SDK, make sure to set your Runware API key in the environment variable RUNWARE_API_KEY. You can do this by creating a .env file in your project root and adding the following line:

RUNWARE_API_KEY = "your_api_key_here"

Generating Images

To generate images using the Runware API, you can use the imageInference method of the Runware class. Here's an example:

from runware import Runware, IImageInference

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    request_image = IImageInference(
        positivePrompt="a beautiful sunset over the mountains",
        model="civitai:36520@76907",  
        numberResults=4,  
        negativePrompt="cloudy, rainy",
        height=512,  
        width=512, 
    )

    images = await runware.imageInference(requestImage=request_image)
    for image in images:
        print(f"Image URL: {image.imageURL}")

Enhancing Prompts

To enhance prompts using the Runware API, you can use the promptEnhance method of the Runware class. Here's an example:

from runware import Runware, IPromptEnhance

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    prompt = "A beautiful sunset over the mountains"
    prompt_enhancer = IPromptEnhance(
        prompt=prompt,
        promptVersions=3,
        promptMaxLength=64,
    )

    enhanced_prompts = await runware.promptEnhance(promptEnhancer=prompt_enhancer)
    for enhanced_prompt in enhanced_prompts:
        print(enhanced_prompt.text)

Removing Image Background

To remove the background from an image using the Runware API, you can use the imageBackgroundRemoval method of the Runware class. Here's an example:

from runware import Runware, IImageBackgroundRemoval

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    image_path = "image.jpg"
    remove_image_background_payload = IImageBackgroundRemoval(image_initiator=image_path)

    processed_images = await runware.imageBackgroundRemoval(
        removeImageBackgroundPayload=remove_image_background_payload
    )
    for image in processed_images:
        print(image.imageURL)

Image-to-Text Conversion

To convert an image to text using the Runware API, you can use the imageCaption method of the Runware class. Here's an example:

from runware import Runware, IRequestImageToText

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    image_path = "image.jpg"
    request_image_to_text_payload = IImageCaption(image_initiator=image_path)

    image_to_text = await runware.imageCaption(
        requestImageToText=request_image_to_text_payload
    )
    print(image_to_text.text)

Upscaling Images

To upscale an image using the Runware API, you can use the imageUpscale method of the Runware class. Here's an example:

from runware import Runware, IImageUpscale

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    image_path = "image.jpg"
    upscale_factor = 4

    upscale_gan_payload = IImageUpscale(
        inputImage=image_path, upscaleFactor=upscale_factor
    )
    upscaled_images = await runware.imageUpscale(upscaleGanPayload=upscale_gan_payload)
    for image in upscaled_images:
        print(image.imageSrc)

Photo Maker

Use the photoMaker method of the Runware class. Here's an example:

from runware import Runware, IPhotoMaker
import uuid

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    request_image = IPhotoMaker(
        positivePrompt="img of a beautiful lady in a forest",
        steps=35,
        numberResults=1,
        height=512,
        width=512,
        style="No style",
        strength=40,
        outputFormat="WEBP",
        includeCost=True,
        taskUUID=str(uuid.uuid4()),
        inputImages=[
            "https://im.runware.ai/image/ws/0.5/ii/74723926-22f6-417c-befb-f2058fc88c13.webp",
            "https://im.runware.ai/image/ws/0.5/ii/64acee31-100d-4aa1-a47e-6f8b432e7188.webp",
            "https://im.runware.ai/image/ws/0.5/ii/1b39b0e0-6bf7-4c9a-8134-c0251b5ede01.webp",
            "https://im.runware.ai/image/ws/0.5/ii/f4b4cec3-66d9-4c02-97c5-506b8813182a.webp"
        ],
    )
    
    
     photos = await runware.photoMaker(requestPhotoMaker=request_image)
     for photo in photos:
         print(f"Image URL: {photo.imageURL}")

Generating Images with refiner

To generate images using the Runware API with refiner support, you can use the imageInference method of the Runware class. Here's an example:

from runware import Runware, IImageInference, IRefiner

async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()
    
    refiner = IRefiner(
        model="civitai:101055@128080",
        startStep=a,
        startStepPercentage=None,
    )

    request_image = IImageInference(
        positivePrompt="a beautiful sunset over the mountains",
        model="civitai:36520@76907",  
        numberResults=4,  
        negativePrompt="cloudy, rainy",
        height=512,  
        width=512, 
        refiner=refiner
    )

    images = await runware.imageInference(requestImage=request_image)
    for image in images:
        print(f"Image URL: {image.imageURL}")

Model Upload

To upload model using the Runware API, you can use the uploadModel method of the Runware class. Here are examples:

from runware import Runware, IImageInference, IRefiner, IUploadModelCheckPoint


async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    payload = IUploadModelCheckPoint(
        air='qatests:68487@08629',
        name='yWO8IaKwez',
        heroImageUrl='https://raw.githubusercontent.com/adilentiq/test-images/refs/heads/main/image.jpg',
        downloadUrl='https://repo-controlnets-r2.runware.ai/controlnet-zoe-depth-sdxl-1.0.safetensors'
                    '/controlnet-zoe-depth-sdxl-1.0.safetensors.part-001-1',
        uniqueIdentifier='aq2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1234',
        version='1.0',
        tags=['tag1', 'tag2', 'tag2'],
        architecture='flux1d',
        type='base',
        defaultWeight=0.8,
        format='safetensors',
        positiveTriggerWords='my trigger word',
        shortDescription='a model description',
        private=False,
        defaultScheduler='Default',
        comment='some comments if you want to add for internal use',
    )

    uploaded = await runware.modelUpload(payload)
    print(f"Response : {uploaded}")
from runware import Runware, IImageInference, IRefiner, IUploadModelLora


async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    payload = IUploadModelLora(
        air='qatests:68487@08629',
        name='yWO8IaKwez',
        heroImageUrl='https://raw.githubusercontent.com/adilentiq/test-images/refs/heads/main/image.jpg',
        downloadUrl='https://repo-controlnets-r2.runware.ai/controlnet-zoe-depth-sdxl-1.0.safetensors'
                    '/controlnet-zoe-depth-sdxl-1.0.safetensors.part-001-1',
        uniqueIdentifier='aq2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1234',
        version='1.0',
        tags=['tag1', 'tag2', 'tag2'],
        architecture='flux1d',
        type='base',
        defaultWeight=0.8,
        format='safetensors',
        positiveTriggerWords='my trigger word',
        shortDescription='a model description',
        private=False,
        comment='some comments if you want to add for internal use',
    )

    uploaded = await runware.modelUpload(payload)
    print(f"Response : {uploaded}")
from runware import Runware, IImageInference, IRefiner, IUploadModelControlNet


async def main() -> None:
    runware = Runware(api_key=RUNWARE_API_KEY)
    await runware.connect()

    payload = IUploadModelControlNet(
        air='qatests:68487@08629',
        name='yWO8IaKwez',
        heroImageUrl='https://raw.githubusercontent.com/adilentiq/test-images/refs/heads/main/image.jpg',
        downloadUrl='https://repo-controlnets-r2.runware.ai/controlnet-zoe-depth-sdxl-1.0.safetensors'
                    '/controlnet-zoe-depth-sdxl-1.0.safetensors.part-001-1',
        uniqueIdentifier='aq2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1q2w3e4r5t6y7u8i9o0p1234',
        version='1.0',
        tags=['tag1', 'tag2', 'tag2'],
        architecture='flux1d',
        type='base',
        format='safetensors',
        positiveTriggerWords='my trigger word',
        shortDescription='a model description',
        private=False,
        comment='some comments if you want to add for internal use',
    )


uploaded = await runware.modelUpload(payload)
print(f"Response : {uploaded}")

For more detailed usage and additional examples, please refer to the examples directory.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

runware-0.3.3.tar.gz (35.1 kB view details)

Uploaded Source

Built Distribution

runware-0.3.3-py3-none-any.whl (35.3 kB view details)

Uploaded Python 3

File details

Details for the file runware-0.3.3.tar.gz.

File metadata

  • Download URL: runware-0.3.3.tar.gz
  • Upload date:
  • Size: 35.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for runware-0.3.3.tar.gz
Algorithm Hash digest
SHA256 6f0446584597f243497309ec1df1df6cf43c83612d6f324eaa8971a2a632fc0e
MD5 da13cd00d69799dcef5b039e0bbbccf5
BLAKE2b-256 c1c8f336520eb6c82caee158c11b380837097adc30a4ab7c69fed37d05cfe6b6

See more details on using hashes here.

Provenance

The following attestation bundles were made for runware-0.3.3.tar.gz:

Publisher: release.yml on Runware/sdk-python

Attestations:

File details

Details for the file runware-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: runware-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 35.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for runware-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ed30f666505a54a6b36ab079746179ae954cbd516d0ecf912adb8ccebcf50138
MD5 86b35192a130f85df283ad80013fafa2
BLAKE2b-256 1be16bb447bffc32142dc012875cb0d51c18b8c5a23b4813bf16e6e66b415a70

See more details on using hashes here.

Provenance

The following attestation bundles were made for runware-0.3.3-py3-none-any.whl:

Publisher: release.yml on Runware/sdk-python

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page