Skip to main content

Rust inspired Result and Option types

Project description

Rusty results

Docs Run Python Tests codecov Downloads GitHub release Gitpod ready-to-code

Rusty results is a Python library for dealing with result and optional types inspired by rust standard library.

Pattern matching ready!

It exposes two main types with two constructors each one.

Result

Result[T, E] is the type used for returning and propagating errors. It is based in the variants, Ok(T), representing success and containing a value, and Err(E), representing error and containing an error value.

Option

Option[T] represents an optional value: every Option is either Some(T) that contains a value, or Empty() that does not. Option types have a number of uses:

  • Initial values
  • Return values for functions that are not defined over the entire input range (partial function)
  • Return value for otherwise reporting simple errors, where Empty is returned on error.
  • Optional struct fields
  • Optional function arguments

Installation

Use the package manager pip to install rusty results.

pip install rusty_results

Usage

from rusty_results import Option, Some, Empty, Result, Ok, Err, UnwrapException

Examples

"""
Example on pattern matching handling of Result
"""

from rusty_results import Result, Ok, Err


def divide(a: int, b: int) -> Result[int, str]:
    if b == 0:
        return Err("Cannot divide by zero")
    return Ok(a // b)


if __name__ == "__main__":
    values = [(10, 0), (10, 5)]
    for a, b in values:
        divide_result = divide(a, b)
        match divide_result:
            case Ok(value):
                print(f"{a} // {b} == {value}")
            case Err(e):
                print(e)

You can find more examples in the /examples folder.

Pydantic

Option and Result are fully compatible with pydantic models

import pydantic
from rusty_results import Option, Some, Empty


class MyData(pydantic.BaseModel):
    name: Option[str]
    phone: Option[int]

    
if __name__ == "__main__":
    import json
    # serialize to json
    json_data = MyData(name=Some("Link"), phone=Empty()).json()
    print(json_data)
    # deserialize json data
    data = MyData(**json.loads(json_data))
    print(data)

prints out:

{"name": {"Some": "Link"}, "phone": {}}
name=Some(Some='Link') phone=Empty()

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rusty-results-1.1.1.tar.gz (10.4 kB view details)

Uploaded Source

Built Distribution

rusty_results-1.1.1-py3-none-any.whl (9.4 kB view details)

Uploaded Python 3

File details

Details for the file rusty-results-1.1.1.tar.gz.

File metadata

  • Download URL: rusty-results-1.1.1.tar.gz
  • Upload date:
  • Size: 10.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.10.2

File hashes

Hashes for rusty-results-1.1.1.tar.gz
Algorithm Hash digest
SHA256 d2ca6da1db15dc1ea0aa97fb35254b125ef6c872b6228d99a42f0d9fff55d40f
MD5 33530e739e38c66e8aed3aecd02c6dba
BLAKE2b-256 3a22ac95c4aa79f917182aaa11fbf0c0b95cc3a48854bb2ce81333880b5d007d

See more details on using hashes here.

File details

Details for the file rusty_results-1.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for rusty_results-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 f685877d2797a90c7ee0c9cb053dd050b237a6ee7ff6b417fcc1484ea28e10ce
MD5 5357ec4aef4605090c760fe5b7c2f6a1
BLAKE2b-256 6619e2fa391bfac3a34e08f1a8c9151a7d97c595265a22d036121eec6df61629

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page