Skip to main content

Term extraction for Russian language

Project description

Библиотека для извлечения ключевых слов из текстов на русском языке. Для морфологического анализа используется pymorphy2. Разработка вдохновлена библиотекой topia.termextract, которая делает то же самое с англоязычными текстами.

Установка

pip install rutermextract

Использование

>>> from rutermextract import TermExtractor
>>> term_extractor = TermExtractor()
>>> text = u'Съешь ещё этих мягких французских булок да выпей же чаю.'
>>> for term in term_extractor(text):
>>>    print term.normalized, term.count
мягкие французские булки 1
чай 1

Извлеченные ключевые слова приводятся в нормальную форму и упорядочиваются от более важных к менее важным.

Возможные применения

  • Автоматическое присвоение тегов.

  • Вычисление похожести текстов на основе извлеченных ключевых слов.

Вызов библиотеки

Аргументы при вызове экземпляра класса TermExtractor:

  • text — текст.

  • (опционально) limit — максимальное количество извлечённых ключевых слов. По умолчанию ограничения нет.

  • (опционально) nestedTrue, если нужно ивзлекать ключевые слова, лежащие внутри других ключевых слов. Например, вместе с «функциональный язык программирования» извлекаются «язык программирования» и «программирование».

  • (опционально) weight — функция для вычисления веса извлеченного ключевого слова. В нее передается объект типа Term. По умолчанию ключевые слова упорядочиваются по количеству употреблений, затем по количеству слов.

  • (опционально) stringsTrue, если результатом вызова должен быть список нормализованных строк. По умолчанию возвращается список объектов типа Term.

Term имеет следующие свойства: words (список слов), word_count (количество слов), normalized (тёрм в виде нормализованной строки), count — количество употреблений.

Пример использования функции веса

>>> from rutermextract import TermExtractor
>>> term_extractor = TermExtractor()
>>> text = ...
>>> idf = ...  # Словарь соответствия ключевых слов их обратным частотам.
>>> terms = term_extractor(text, weight=lambda term: idf.get(term.normalized, 1.0) * term.count)

Зависимости

  • Python 2.6+ или 3.3+.

  • pymorphy2.

  • enum34 (для версий ниже 3.4).

Качество работы

Библиотека извлекает ключевые слова на основе заранее заданных правил. К сожалению, на данный момент это единственный возможный вариант, поскольку для русского языка не существует открытого синтаксического корпуса, который можно использовать для обучения синтаксических моделей.

Основные проблемы:

  1. Неполные правила. Например, сейчас не извлекаются ключевые слова, содержащие предлоги («вор в законе», «сосед по парте»). Эта проблема может решаться при дальнейшем развитии библиотеки, но правил, покрывающих все случаи всё равно быть не может.

  2. Неоднозначность при морфологическом разборе. Сейчас она разрешается выбором наиболее вероятного варианта, что в некоторых случаях неверно. Проблема может проявляться как при извлечении ключевых слов, так и при их нормализации. (Например, из заголовка «Мальчика назвали в честь нападающего футбольного клуба» будет извлечена фраза «нападающий футбольный клуб».)

  3. Ложные ключевые слова. Некоторые извлеченные фразы могут не являться на самом деле ключевыми. Размера текста не всегда бывает достаточно для того, чтобы отличить важные для текста слова от неважных, основываясь только на количестве употреблений. Поэтому необходимо использовать сторонние модели (например, tf-idf) для определения важности ключевых слов.

Обратная связь

Буду рад услышать предложения по улучшению или сообщения о багах в issues или по почте.

Лицензия

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rutermextract-0.2.zip (16.2 kB view details)

Uploaded Source

File details

Details for the file rutermextract-0.2.zip.

File metadata

  • Download URL: rutermextract-0.2.zip
  • Upload date:
  • Size: 16.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for rutermextract-0.2.zip
Algorithm Hash digest
SHA256 daf01ac0faa8723787b0a517b5e945990f57ad216ac9bd47f566f3a76538c6f6
MD5 9aa6868cb76096e7eb13c5daa745089c
BLAKE2b-256 18be59c1e639c7d3b198455ca981bcffa6cdd1e08aaec7e2f4040c045f726a84

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page