Skip to main content

random values generator

Project description

🎲 rvg 🎲 - Random Values Generator

Testing codecov CodeFactor PyPI release

Description

rvg is a Python 3 package utility to create random values of any Python 3 data type.

Its main purpose is to help in applications where reliable -in terms of type safety- random values are needed (e.g. statistics, machine learning, general testing etc), and in specific layouts (e.g. "I want a numpy structured array of random pairs of ints and floats and I want it now").

Authors

Sotiris Niarchos and George Papadopoulos

Installation

You can either:

  • download the source code from the releases page or clone the repo (the master branch will always mirror the latest release)
  • use pip:
pip install rvg

Current Status

Alpha release

For the time being, only numpy types are supported. More specifically:

  • numpy scalar data types
  • numpy arrays of scalar data types
  • numpy arrays of structured data types

After the alpha release, more features will be implemented, focusing mainly on Python 3 native types.

Usage

Right now, rvg provides 2 interafaces for random values generation through the NumPyRVG class:

  1. Create a generator of a certain data type
  2. Create a generator with specific numerical limits A demonstration follows:
from rvg import NumPyRVG
import numpy as np

# Interface 1
randuint = NumPyRVG(dtype=np.uint16)

# Interface 2
randsmall = NumPyRVG(limit=10) # same as limits=(-10, 10)
randbig = NumPyRVG(limits=(1e10, 1e100))

The functionalities of NumPyRVG include the generation of:

  • numpy scalar data types:
>>> randsmall(np.uint8)
8
>>> randbig(np.double)
1.9296971162995923e+99
>>> res = [randsmall(t) for t in [np.int8, np.uint16, np.float32, np.double]]
>>> res
[7, 1, 3.0503626, 3.759943941132951]
>>> list(map(type, res))
[<class 'numpy.int8'>, <class 'numpy.uint16'>, <class 'numpy.float32'>, <class 'numpy.float64'>]
  • numpy array data types from scalar types:
>>> randuint((50, 100), shape=3)
array([79, 81, 85], dtype=uint16)
>>> randsmall(np.float16, shape=(4, 2))
array([[-7.23 , -9.31 ],
       [-4.97 , -6.06 ],
       [-5.19 , -3.344],
       [-6.586, -3.133]], dtype=float16)
  • numpy structured array data types (structured datatypes can be nested). Limits and shapes can be given in the form of a dictionary, describing all limits and/or shapes of each field of each level of the structured data type. An example follows:
#  Consider the struct definition below, in C:
##############################################
#  typedef struct knode {
#      int location;
#      int indices [3];
#      int  keys [3];
#      bool is_leaf;
#      int num_keys;
#  } knode;
##############################################

import numpy as np
from rvg import NumPyRVG

knode = np.dtype([
    ('location', int),
    ('indices', (int, 3)),
    ('keys', (int, 3)),
    ('is_leaf', int),
    ('num_keys', int)
])

knode_params = {
    'location'  : (0, 10),
    'indices'   : 42,
    'keys'      : 117,
    'is_leaf'   : (0, 2),
    'num_keys'  : (0, 256)
}

random_knode = NumPyRVG(dtype=knode)
knodes_array = random_knode(knode_params, 5)
print(knodes_array)

The output of the above script is a nested structured numpy array consisting of 5 knode structs, randomly initialized!

[(0, [-18, -11,  34], [  89,   35,  -57], 1, 189)
 (6, [-35,   0,   4], [ -56,  -65,   26], 1, 217)
 (4, [-29,  40,  37], [  93, -116,   91], 0,  38)
 (2, [-28, -42, -36], [-101,    0,  -43], 0,  82)
 (0, [-14, -19, -13], [ -98,  -46,  -78], 1, 238)]

If the script was run in an interpreter, you could inspect its type as well:

>>> knodes_array
array([(0, [-18, -11,  34], [  89,   35,  -57], 1, 189),
       (6, [-35,   0,   4], [ -56,  -65,   26], 1, 217),
       (4, [-29,  40,  37], [  93, -116,   91], 0,  38),
       (2, [-28, -42, -36], [-101,    0,  -43], 0,  82),
       (0, [-14, -19, -13], [ -98,  -46,  -78], 1, 238)],
      dtype=[('location', '<i8'), ('indices', '<i8', (3,)), ('keys', '<i8', (3,)), ('is_leaf', '<i8'), ('num_keys', '<i8')])

The feature of nesting is not limited in arrays; you can create data types that are as complex as you want and/or need! See the relative test as an example of struct nesting.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for rvg, version 0.1.11
Filename, size File type Python version Upload date Hashes
Filename, size rvg-0.1.11-py3-none-any.whl (7.7 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size rvg-0.1.11.tar.gz (7.2 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page