Skip to main content

The RWKV Language Model on PaddlePaddle

Project description

The RWKV Language Model Inference on PaddlePaddle

https://github.com/HighCWu/rwkv-paddle

https://github.com/BlinkDL/ChatRWKV

https://github.com/BlinkDL/RWKV-LM

PS: Some strategies are not supported on PaddlePaddle. The best supported strategies are 'cuda fp16' and 'cpu fp32'.

PS: PaddlePaddle version should be greater than 2.4.0.

import os

# set these before import RWKV
os.environ['RWKV_JIT_ON'] = '0' # RWKV JIT Mode is not supported on paddlepaddle now
os.environ["RWKV_CUDA_ON"] = '0' # '1' to compile CUDA kernel (10x faster), requires c++ compiler & cuda libraries

########################################################################################################
#
# Use '/' in model path, instead of '\'. Use ctx4096 models if you need long ctx.
#
# fp16 = good for GPU (!!! DOES NOT support CPU !!!)
# fp32 = good for CPU
# bf16 = worse accuracy, supports CPU
# xxxi8 (example: fp16i8, fp32i8) = xxx with int8 quantization to save 50% VRAM/RAM, slower, slightly less accuracy
#
# We consider [ln_out+head] to be an extra layer, so L12-D768 (169M) has "13" layers, L24-D2048 (1.5B) has "25" layers, etc.
# Strategy Examples: (device = cpu/cuda/cuda:0/cuda:1/...)
# 'cpu fp32' = all layers cpu fp32
# 'cuda fp16' = all layers cuda fp16
# 'cuda fp16i8' = all layers cuda fp16 with int8 quantization
# 'cuda fp16i8 *10 -> cpu fp32' = first 10 layers cuda fp16i8, then cpu fp32 (increase 10 for better speed)
# 'cuda:0 fp16 *10 -> cuda:1 fp16 *8 -> cpu fp32' = first 10 layers cuda:0 fp16, then 8 layers cuda:1 fp16, then cpu fp32
#
# Basic Strategy Guide: (fp16i8 works for any GPU)
# 100% VRAM = 'cuda fp16'                   # all layers cuda fp16
#  98% VRAM = 'cuda fp16i8 *1 -> cuda fp16' # first 1 layer  cuda fp16i8, then cuda fp16
#  96% VRAM = 'cuda fp16i8 *2 -> cuda fp16' # first 2 layers cuda fp16i8, then cuda fp16
#  94% VRAM = 'cuda fp16i8 *3 -> cuda fp16' # first 3 layers cuda fp16i8, then cuda fp16
#  ...
#  50% VRAM = 'cuda fp16i8'                 # all layers cuda fp16i8
#  48% VRAM = 'cuda fp16i8 -> cpu fp32 *1'  # most layers cuda fp16i8, last 1 layer  cpu fp32
#  46% VRAM = 'cuda fp16i8 -> cpu fp32 *2'  # most layers cuda fp16i8, last 2 layers cpu fp32
#  44% VRAM = 'cuda fp16i8 -> cpu fp32 *3'  # most layers cuda fp16i8, last 3 layers cpu fp32
#  ...
#   0% VRAM = 'cpu fp32'                    # all layers cpu fp32
#
# Use '+' for STREAM mode, which can save VRAM too, and it is sometimes faster
# 'cuda fp16i8 *10+' = first 10 layers cuda fp16i8, then fp16i8 stream the rest to it (increase 10 for better speed)
#
# Extreme STREAM: 3G VRAM is enough to run RWKV 14B (slow. will be faster in future)
# 'cuda fp16i8 *0+ -> cpu fp32 *1' = stream all layers cuda fp16i8, last 1 layer [ln_out+head] cpu fp32
#
# ########################################################################################################

from rwkv_paddle.model import RWKV
from rwkv_paddle.utils import PIPELINE, PIPELINE_ARGS

# download models: https://huggingface.co/BlinkDL
model = RWKV(model='/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-169m/RWKV-4-Pile-169M-20220807-8023', strategy='cpu fp32')
pipeline = PIPELINE(model, "20B_tokenizer.json") # 20B_tokenizer.json is in https://github.com/HighCWu/rwkv-paddle

ctx = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
print(ctx, end='')

def my_print(s):
    print(s, end='', flush=True)

# For alpha_frequency and alpha_presence, see "Frequency and presence penalties":
# https://platform.openai.com/docs/api-reference/parameter-details

args = PIPELINE_ARGS(temperature = 1.0, top_p = 0.7, top_k = 100, # top_k = 0 then ignore
                     alpha_frequency = 0.25,
                     alpha_presence = 0.25,
                     token_ban = [0], # ban the generation of some tokens
                     token_stop = [], # stop generation whenever you see any token here
                     chunk_len = 256) # split input into chunks to save VRAM (shorter -> slower)

pipeline.generate(ctx, token_count=200, args=args, callback=my_print)
print('\n')

out, state = model.forward([187, 510, 1563, 310, 247], None)
print(out.detach().cpu().numpy())                   # get logits
out, state = model.forward([187, 510], None)
out, state = model.forward([1563], state)           # RNN has state (use deepcopy to clone states)
out, state = model.forward([310, 247], state)
print(out.detach().cpu().numpy())                   # same result as above
print('\n')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rwkv-paddle-0.7.3.1.tar.gz (21.2 kB view details)

Uploaded Source

Built Distribution

rwkv_paddle-0.7.3.1-py3-none-any.whl (20.7 kB view details)

Uploaded Python 3

File details

Details for the file rwkv-paddle-0.7.3.1.tar.gz.

File metadata

  • Download URL: rwkv-paddle-0.7.3.1.tar.gz
  • Upload date:
  • Size: 21.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for rwkv-paddle-0.7.3.1.tar.gz
Algorithm Hash digest
SHA256 e21ffcbac14b89efd60fad9eb630a6cc1225a2578057966290523a4d67a25beb
MD5 7d12966b0f2dd06e99e0f04afbca1e06
BLAKE2b-256 f778eb60215260593ae3d7af8abc716014317fab2030f9335ef059237b64244a

See more details on using hashes here.

File details

Details for the file rwkv_paddle-0.7.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for rwkv_paddle-0.7.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b33e7db16e44fafe5256ce99ae40160df92e59f3b2147b3c0ae80e34bc67c6a7
MD5 aac17805cb8f88de0dca4032e5df6e35
BLAKE2b-256 f5ba225c77fa6bed16badb002c5d1d47cb45322e8dc838e616dda9797cd03d5c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page