Skip to main content

Training of OpenNMT-based RXN models

Project description

RXN package for OpenNMT-based models

Actions tests

This repository contains a Python package and associated scripts for training reaction models based on the OpenNMT library. The repository is built on top of other RXN packages; see our other repositories rxn-utilities, rxn-chemutils, and rxn-onmt-utils.

For the evaluation of trained models, see the rxn-metrics repository.

Links:

This repository was produced through a collaborative project involving IBM Research Europe and Syngenta.

System Requirements

This package is supported on all operating systems. It has been tested on the following systems:

  • macOS: Big Sur (11.1)
  • Linux: Ubuntu 18.04.4

A Python version of 3.6, 3.7, or 3.8 is recommended. Python versions 3.9 and above are not expected to work due to compatibility with the selected version of OpenNMT.

Installation guide

The package can be installed from Pypi:

pip install rxn-onmt-models[rdkit]

You can leave out [rdkit] if RDKit is already available in your environment.

For local development, the package can be installed with:

pip install -e ".[dev,rdkit]"

Training models.

Example of usage for training RXN models

The easy way

Simply execute the interactive program rxn-plan-training in your terminal and follow the instructions.

The complicated way

  1. Optional: set shell variables, to be used in the commands later on.
MODEL_TASK="forward"

# Existing TXT files
DATA_1="/path/to/data_1.txt"
DATA_2="/path/to/data_2.txt"
DATA_3="/path/to/data_3.txt"

# Where to put the processed data
DATA_DIR_1="/path/to/processed_data_1"
DATA_DIR_2="/path/to/processed_data_2"
DATA_DIR_3="/path/to/processed_data_3"

# Where to save the ONMT-preprocessed data
PREPROCESSED="/path/to/onmt-preprocessed"

# Where to save the models
MODELS="/path/to/models"
MODELS_FINETUNED="/path/to/models_finetuned"
  1. Prepare the data (standardization, filtering, etc.)
rxn-prepare-data --input_data $DATA_1 --output_dir $DATA_DIR_1
  1. Preprocess the data with OpenNMT
rxn-onmt-preprocess --input_dir $DATA_DIR_1 --output_dir $PREPROCESSED --model_task $MODEL_TASK
  1. Train the model (here with small parameter values, to make it fast on CPU for testing).
rxn-onmt-train --model_output_dir $MODELS --preprocess_dir $PREPROCESSED_SINGLE --train_num_steps 10 --batch_size 4 --heads 2 --layers 2 --transformer_ff 512 --no_gpu

Multi-task training

For multi-task training, the process is similar. We need to prepare also the second data set; in addition, the OpenNMT preprocessing and training take additional arguments. To sum up:

rxn-prepare-data --input_data $DATA_1 --output_dir $DATA_DIR_1
rxn-prepare-data --input_data $DATA_2 --output_dir $DATA_DIR_2
rxn-prepare-data --input_data $DATA_2 --output_dir $DATA_DIR_3
rxn-onmt-preprocess --input_dir $DATA_DIR_1 --output_dir $PREPROCESSED --model_task $MODEL_TASK \
  --additional_data $DATA_DIR_2 --additional_data $DATA_DIR_3
rxn-onmt-train --model_output_dir $MODELS --preprocess_dir $PREPROCESSED --train_num_steps 30 --batch_size 4 --heads 2 --layers 2 --transformer_ff 256 --no_gpu \
  --data_weights 1 --data_weights 3 --data_weights 4

Continuing the training

Continuing training is possible (for both single-task and multi-task); it needs fewer parameters:

rxn-onmt-continue-training --model_output_dir $MODELS --preprocess_dir $PREPROCESSED --train_num_steps 30 --batch_size 4 --no_gpu \
  --data_weights 1 --data_weights 3 --data_weights 4

Fine-tuning

Fine-tuning is in principle similar to continuing the training. The main differences are the potential occurrence of new tokens, as well as the optimizer being reset. There is a dedicated command for fine-tuning. For example:

rxn-onmt-finetune --model_output_dir $MODELS_FINETUNED --preprocess_dir $PREPROCESSED --train_num_steps 20 --batch_size 4 --no_gpu \
  --train_from $MODELS/model_step_30.pt

The syntax is very similar to rxn-onmt-train and rxn-onmt-continue-training. This is compatible both with single-task and multi-task.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rxn-onmt-models-1.1.0.tar.gz (25.6 kB view details)

Uploaded Source

Built Distribution

rxn_onmt_models-1.1.0-py3-none-any.whl (29.5 kB view details)

Uploaded Python 3

File details

Details for the file rxn-onmt-models-1.1.0.tar.gz.

File metadata

  • Download URL: rxn-onmt-models-1.1.0.tar.gz
  • Upload date:
  • Size: 25.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for rxn-onmt-models-1.1.0.tar.gz
Algorithm Hash digest
SHA256 b2fb6c8b72340c51f380cb339c40ff97a7ad72e388afd0bcfa3f6d94970667ab
MD5 e6fc3c0f1fd2b7698fba2cbedac78ae5
BLAKE2b-256 1659f53a51b7cb9221f69b49360699926cfe7b759b0e6f891001f31c1f4f4757

See more details on using hashes here.

Provenance

File details

Details for the file rxn_onmt_models-1.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for rxn_onmt_models-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 62975185ac0fb8572bda9b6e1bcd59adcab31b6c33fb2980bed0ea56ede8a72e
MD5 a54d561129829c226c06543fa790b9bd
BLAKE2b-256 23c07074652131ff547d8e3d0d96159069617767b857a1c6dbfa811c926394d9

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page