Skip to main content

Reaction preprocessing tools

Project description

RXN reaction preprocessing

Actions tests

This repository is devoted to preprocessing chemical reactions: standardization, filtering, etc. It also includes code for stable train/test/validation splits and data augmentation.

Links:

System Requirements

This package is supported on all operating systems. It has been tested on the following systems:

  • macOS: Big Sur (11.1)
  • Linux: Ubuntu 18.04.4

A Python version of 3.7 or greater is recommended.

Installation guide

The package can be installed from Pypi:

pip install rxn-reaction-preprocessing[rdkit]

You can leave out [rdkit] if you prefer to install rdkit manually (via Conda or Pypi).

For local development, the package can be installed with:

pip install -e ".[dev]"

Usage

The following command line scripts are installed with the package.

rxn-data-pipeline

Wrapper for all other scripts. Allows constructing flexible data pipelines. Entrypoint for Hydra structured configuration.

For an overview of all available configuration parameters and default values, run: rxn-data-pipeline --cfg job.

Configuration using YAML (see the file config.py for more options and their meaning):

defaults:
  - base_config

data:
  path: /tmp/inference/input.csv
  proc_dir: /tmp/rxn-preproc/exp
common:
  sequence:
    # Define which steps and in which order to execute:
    - IMPORT
    - STANDARDIZE
    - PREPROCESS
    - SPLIT
    - TOKENIZE
  fragment_bond: TILDE
preprocess:
  min_products: 0
split:
  split_ratio: 0.05
tokenize:
  input_output_pairs:
    - inp: ${data.proc_dir}/${data.name}.processed.train.csv
      out: ${data.proc_dir}/${data.name}.processed.train
    - inp: ${data.proc_dir}/${data.name}.processed.validation.csv
      out: ${data.proc_dir}/${data.name}.processed.validation
    - inp: ${data.proc_dir}/${data.name}.processed.test.csv
      out: ${data.proc_dir}/${data.name}.processed.test
rxn-data-pipeline --config-dir . --config-name example_config

Configuration using command line arguments (example):

rxn-data-pipeline \
  data.path=/path/to/data/rxns-small.csv \
  data.proc_dir=/path/to/proc/dir \
  common.fragment_bond=TILDE \
  rxn_import.data_format=TXT \
  tokenize.input_output_pairs.0.out=train.txt \
  tokenize.input_output_pairs.1.out=validation.txt \
  tokenize.input_output_pairs.2.out=test.txt

Note about reading CSV files

Pandas appears not to always be able to write a CSV and re-read it if it contains Windows carriage returns. In order for the scripts to work despite this, all the pd.read_csv function calls should include the argument lineterminator='\n'.

Examples

A pipeline supporting augmentation

A config supporting augmentation of the training split called train-augmentation-config.yaml:

defaults:
  - base_config

data:
  name: pipeline-with-augmentation
  path: /tmp/file-with-reactions.txt
  proc_dir: /tmp/rxn-preprocessing/experiment
common:
  sequence:
    # Define which steps and in which order to execute:
    - IMPORT
    - STANDARDIZE
    - PREPROCESS
    - SPLIT
    - AUGMENT
    - TOKENIZE
  fragment_bond: TILDE
rxn_import:
  data_format: TXT
preprocess:
  min_products: 1
split:
  input_file_path: ${preprocess.output_file_path}
  split_ratio: 0.05
augment:
  input_file_path: ${data.proc_dir}/${data.name}.processed.train.csv
  output_file_path: ${data.proc_dir}/${data.name}.augmented.train.csv
  permutations: 10
  tokenize: false
  random_type: rotated
tokenize:
  input_output_pairs:
    - inp: ${data.proc_dir}/${data.name}.augmented.train.csv
      out: ${data.proc_dir}/${data.name}.augmented.train
      reaction_column_name: rxn_rotated
    - inp: ${data.proc_dir}/${data.name}.processed.validation.csv
      out: ${data.proc_dir}/${data.name}.processed.validation
    - inp: ${data.proc_dir}/${data.name}.processed.test.csv
      out: ${data.proc_dir}/${data.name}.processed.test
rxn-data-pipeline --config-dir . --config-name train-augmentation-config

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rxn-reaction-preprocessing-2.2.0.tar.gz (96.4 kB view details)

Uploaded Source

Built Distribution

rxn_reaction_preprocessing-2.2.0-py3-none-any.whl (98.3 kB view details)

Uploaded Python 3

File details

Details for the file rxn-reaction-preprocessing-2.2.0.tar.gz.

File metadata

File hashes

Hashes for rxn-reaction-preprocessing-2.2.0.tar.gz
Algorithm Hash digest
SHA256 b0d5ef704f67a751ad4b46073820a3ef18b7a4863b39a21d7b72be0ad92a7d6c
MD5 69cc58e1070caf0bc3a8bc82a81ce8a7
BLAKE2b-256 40c8f46a723ad1ba29e266b5b5123d6e9a832db42eb098d62b3b8d3d3eb944b3

See more details on using hashes here.

Provenance

File details

Details for the file rxn_reaction_preprocessing-2.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for rxn_reaction_preprocessing-2.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 39aad50ee0cabf4a8d09fe81b91d49128507ea69034cc1258f7bd4ea96a694e4
MD5 357263b64fd5b735f82e74d48b5e1ee0
BLAKE2b-256 34b065391051e36f8d094abda05f4a5e566aff1995bc795057138af623635b8f

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page