Skip to main content

River-Ml integration into RxSci

Project description

https://badge.fury.io/py/rxsci-river.svg Github WorkFlows Documentation

RxSci operators for Scikit River.

Get Started

Evaluate and train a Hoeffding Tree Classifier from a stream of events:

import rx
import rxsci_river as rsr
from river import synth
from river.tree import HoeffdingTreeClassifier

gen = synth.Agrawal(classification_function=0, seed=42)
rx.from_(gen.take(1000)).pipe(
    rsr.evaluate.prequential(
        model=HoeffdingTreeClassifier(
            grace_period=100,
            split_confidence=1e-5,
            nominal_attributes=['elevel', 'car', 'zipcode'],
        ),
        pretrain_size=100),
).subscribe(
    on_next=print,
)

See the Maki Nage documentation for more information.

Installation

RxSci River is available on PyPi and can be installed with pip:

python3 -m pip install rxsci-river

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rxsci-river-0.1.0.tar.gz (4.8 kB view details)

Uploaded Source

File details

Details for the file rxsci-river-0.1.0.tar.gz.

File metadata

  • Download URL: rxsci-river-0.1.0.tar.gz
  • Upload date:
  • Size: 4.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.10

File hashes

Hashes for rxsci-river-0.1.0.tar.gz
Algorithm Hash digest
SHA256 7c2eba37e6c11065d5c86f9f274bd65cf12afe96c526f731364b470d4d6d6a5f
MD5 d3d2bf37b1106da284559987c353176c
BLAKE2b-256 b583c1fe59afc49833de952cd5069b7e949eb7577a26cf1a8aceda95f6960fad

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page