River-Ml integration into RxSci
Project description
RxSci operators for Scikit River.
Get Started
Evaluate and train a Hoeffding Tree Classifier from a stream of events:
import rx
import rxsci_river as rsr
from river import synth
from river.tree import HoeffdingTreeClassifier
gen = synth.Agrawal(classification_function=0, seed=42)
rx.from_(gen.take(1000)).pipe(
rsr.evaluate.prequential(
model=HoeffdingTreeClassifier(
grace_period=100,
split_confidence=1e-5,
nominal_attributes=['elevel', 'car', 'zipcode'],
),
pretrain_size=100),
).subscribe(
on_next=print,
)
See the Maki Nage documentation for more information.
Installation
RxSci River is available on PyPi and can be installed with pip:
python3 -m pip install rxsci-river
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
rxsci-river-0.1.0.tar.gz
(4.8 kB
view details)
File details
Details for the file rxsci-river-0.1.0.tar.gz
.
File metadata
- Download URL: rxsci-river-0.1.0.tar.gz
- Upload date:
- Size: 4.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7c2eba37e6c11065d5c86f9f274bd65cf12afe96c526f731364b470d4d6d6a5f |
|
MD5 | d3d2bf37b1106da284559987c353176c |
|
BLAKE2b-256 | b583c1fe59afc49833de952cd5069b7e949eb7577a26cf1a8aceda95f6960fad |