Skip to main content

SuperResolution of Sentinel2 imagery.

Project description

Super-resolution for Sentinel 2 files.

Provides a function to Super-sample the 20m bands of the Sentinel 2 imagery to 10m.

It works by using an inception res-net style Deep Learning model trained on 1000 sites randomly selected around the globe. The sites represent at least 25 samples within each Köppen-Geiger climate zones, all cities in the with at least 1 million inhabitatants. For each location, three training mosaics were collected spread out across different seasons resulting in 3000 mosaics.

The model itself is trained by using the RGB bands to sharpen the NIR band. First the resampled NIR band is transposed to the mean values of the RGB bands, secondly the network supersamples the NIR band, and thirdly the network mean-matches the low resolution image to the generated high-resolution image. To super-sample the other bands, they are substituted with the NIR band. The model has been purposely made small to ensure easy deployment.

Dependencies
buteo(https://casperfibaek.github.io/buteo/)
tensorflow (https://www.tensorflow.org/)

Installation
pip install s2super

Quickstart

# Setup
pip install s2super
from s2super import super_sample

# Constants
YEAR = 2021
MONTHS = 1
AOI = [55.67576, 12.56902] # Copenhagen

# Example get Sentinel 2 data function.
data = get_data_from_latlng(AOI, year=YEAR, months=MONTHS)[0] 

# Fast is about 2.5 times faster and almost as good.
super_sampled = super_sample(data, method="fast", fit_data=False)

Super-sampled bands: B05, B06, B07, B8A, B11, B12

super_sample

Super-sample a Sentinel 2 image. The source can either be a NumPy array of the bands, or a .safe file.

Args:

data (str/np.ndarray): The image to supersample. Either .safe file or NumPy array.

Kwargs:

indices (dict): If the input is not a .safe file, a dictionary with the band names and the indices in the NumPy array must be proved. It comes in the form of { "B02": 0, "B03": 1, ... } (Default: 10m first, then 20m)
method (str): Either fast or accurate. If fast, uses less overlaps and weighted average merging. If accurate, uses more overlaps and the mad_merge algorithm (Default: "fast")
fit_data (bool): Should the deep learning model be fitted with the data? Improves accuracy, but takes around 1m to fit on colab. (Default: True)
fit_epochs (int): If the model is refitted, for how many epochs should it run? (Default: 5)
verbose (bool): If True, print statements will update on the progress (Default: True)
normalise (bool): If the input data should be normalised. Leave this True, unless it has already been done. The model expects sentinel 2 l2a data normalised by dividing by 10000.0 (Default: True)
preloaded_model (None/tf.model): Allows preloading the model, useful if applying the super_sampling function within a loop. (Default: None)

Returns:

(np.ndarray): A NumPy array with the supersampled data.

Cite

Fibaek, C.S, Super-sample Sentinel 2, (2022), GitHub repository, https://github.com/casperfibaek/super_res_s2

Developed at the European Space Agency's Φ-lab.

Build

python -m build; python -m twine upload dist/*

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

s2super-1.0.1.tar.gz (28.5 MB view details)

Uploaded Source

Built Distribution

s2super-1.0.1-py3-none-any.whl (28.5 MB view details)

Uploaded Python 3

File details

Details for the file s2super-1.0.1.tar.gz.

File metadata

  • Download URL: s2super-1.0.1.tar.gz
  • Upload date:
  • Size: 28.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for s2super-1.0.1.tar.gz
Algorithm Hash digest
SHA256 8b434c5b9c0af22896ba0856217ebe21e5e740fb7d9fa9189370e7e0141e5940
MD5 2fe0c3f65f11057b19a34410d32ae7d0
BLAKE2b-256 60889e6e13303c8afaf4afe91e7f5a57842d1ab53e4e63bdb377a97d2987f323

See more details on using hashes here.

File details

Details for the file s2super-1.0.1-py3-none-any.whl.

File metadata

  • Download URL: s2super-1.0.1-py3-none-any.whl
  • Upload date:
  • Size: 28.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for s2super-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 e156cae8ac29c0d3356bd2a67b53d6a84d969087b80d34981ef26e6d8356b1e9
MD5 d79fbb554b74248170e1c275d2f9bb8c
BLAKE2b-256 6badcf89c7d19ace2e0da110f95c2249f5b046a941f39bb2e454dda062ac67bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page