Skip to main content

SuperResolution of Sentinel2 imagery.

Project description

Super-resolution for Sentinel 2 files.

Provides a function to "Super-Sample" the 20m bands of the Sentinel 2 imagery to match the 10m bands.

It works by using an inception res-net style Deep Learning model trained on 1000 sites randomly selected around the globe. The sites represent at least 25 samples within each Köppen-Geiger climate zone and at least one image for each city in the world with at least 1 million inhabitants. For each location, three training mosaics were collected spread out across different seasons resulting in a total of 3000 mosaics.

The model itself is trained by using the RGB bands to sharpen the downsampled NIR band. First the resampled NIR band is transposed to the mean values of the RGB bands, secondly the network super-samples the transposed NIR band, and thirdly the network mean-matches the low-resolution image to the generated high-resolution image. To super-sample the other bands, they are substituted with the NIR band. The model has been purposely made small to ensure easy deployment, and the methodology is quite conservative in its estimates to ensure that no wild predictions are made.

The package aims to be a drop-in replacement for arrays sharpened with the bilinear method and should provide a minor improvement in downstream model accuracy.

Dependencies
buteo(https://casperfibaek.github.io/buteo/)
tensorflow (https://www.tensorflow.org/)

Installation
pip install s2super

Quickstart

# Setup
from s2super import super_sample

# Constants
YEAR = 2021
MONTHS = 1
AOI = [0.039611, -51.169216] # Macapá

# Example get Sentinel 2 data function.
data = get_data_from_latlng(AOI, year=YEAR, months=MONTHS)[0] 

# Fast is about 2.5 times faster and almost as good.
super_sampled = super_sample(data, method="fast", fit_data=False)

Super-sampled bands: B05, B06, B07, B8A, B11, B12 Super-sampled bands: B05, B06, B07, B8A, B11, B12 Super-sampled bands: B05, B06, B07, B8A, B11, B12

super_sample

Super-sample a Sentinel 2 image. The source can either be a NumPy array of the bands, or a .safe file.

Args:

data (str/np.ndarray): The image to supersample. Either .safe file or NumPy array.

Kwargs:

indices (dict): If the input is not a .safe file, a dictionary with the band names and the indices in the NumPy array must be proved. It comes in the form of { "B02": 0, "B03": 1, ... } (Default: 10m first, then 20m)
method (str): Either fast or accurate. If fast, uses less overlaps and weighted average merging. If accurate, uses more overlaps and the mad_merge algorithm (Default: "fast")
fit_data (bool): Should the deep learning model be fitted with the data? Improves accuracy, but takes around 1m to fit on colab. (Default: True)
fit_epochs (int): If the model is refitted, for how many epochs should it run? (Default: 5)
verbose (bool): If True, print statements will update on the progress (Default: True)
normalise (bool): If the input data should be normalised. Leave this True, unless it has already been done. The model expects sentinel 2 l2a data normalised by dividing by 10000.0 (Default: True)
preloaded_model (None/tf.model): Allows preloading the model, useful if applying the super_sampling function within a loop. (Default: None)

Returns:

(np.ndarray): A NumPy array with the supersampled data.

Cite

Fibaek, C.S, Super-sample Sentinel 2, (2022), GitHub repository, https://github.com/casperfibaek/super_res_s2

Developed at the European Space Agency's Φ-lab.

Build

python -m build; python -m twine upload dist/*

Cuda-setup

conda install -c nvidia cuda-python conda install -c conda-forge cudnn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

s2super-1.1.5.tar.gz (28.5 MB view details)

Uploaded Source

Built Distribution

s2super-1.1.5-py3-none-any.whl (28.5 MB view details)

Uploaded Python 3

File details

Details for the file s2super-1.1.5.tar.gz.

File metadata

  • Download URL: s2super-1.1.5.tar.gz
  • Upload date:
  • Size: 28.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for s2super-1.1.5.tar.gz
Algorithm Hash digest
SHA256 b12f403bdea06e5ffb4ef8ff7e1e70c97b5f55171487059d9a28765db4123a10
MD5 c7677a266b93f3973484bfe86ad77fd8
BLAKE2b-256 0975e160a0e9e98296140b4a03b513df4e1a02a264237464e422dbee2259a74d

See more details on using hashes here.

File details

Details for the file s2super-1.1.5-py3-none-any.whl.

File metadata

  • Download URL: s2super-1.1.5-py3-none-any.whl
  • Upload date:
  • Size: 28.5 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.12

File hashes

Hashes for s2super-1.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 95c1c0b10f44a1e1ee5d5ccb492d86d742b0ed91bdd6058d69b84e98fb5703e2
MD5 8b550c1f596d41f62d6b6efb9f5d0363
BLAKE2b-256 965547a6418420c9a34962b8d38432b11a696a38934dbd20cdc96b309a6fb99e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page