for saving dictionaries using s3 with bz2 compression
Project description
S3Bz
save and load dictionary to s3 using bz compression
Install
pip install s3bz
How to use
Create a bucket and make sure that it has transfer acceleration enabled
create a buket
aws s3 mb s3://<bucketname>
put transfer acceleration
aws s3api put-bucket-accelerate-configuration --bucket <bucketname> --accelerate-configuration Status=Enabled
First, import the s3 module
import package
from importlib import reload
from s3bz.s3bz import S3
set up dummy data
BZ2 compression
save object using bz2 compression
result = S3.save(key = key,
objectToSave = sampleDict,
bucket = bucket,
user=USER,
pw = PW,
accelerate = True)
print(('failed', 'success')[result])
success
load object with bz2 compression
result = S3.load(key = key,
bucket = bucket,
user = USER,
pw = PW,
accelerate = True)
print(result[0])
{'ib_prcode': '75233', 'ib_brcode': '1004', 'ib_cf_qty': '155', 'new_ib_vs_stock_cv': '880'}
other compressions
Zl : zlib compression with json string encoding pklzl : zlib compression with pickle encoding
print(bucket)
%time S3.saveZl(key,sampleDict,bucket)
%time S3.loadZl(key,bucket)
%time S3.savePklZl(key,sampleDict,bucket)
%time result =S3.loadPklZl(key,bucket)
pybz-test
CPU times: user 22.1 ms, sys: 728 µs, total: 22.9 ms
Wall time: 134 ms
CPU times: user 42.6 ms, sys: 0 ns, total: 42.6 ms
Wall time: 542 ms
CPU times: user 19.3 ms, sys: 0 ns, total: 19.3 ms
Wall time: 150 ms
CPU times: user 41 ms, sys: 3.28 ms, total: 44.3 ms
Wall time: 503 ms
Bring your own compressor and encoder
import gzip, json
compressor=lambda x: gzip.compress(x)
encoder=lambda x: json.dumps(x).encode()
decompressor=lambda x: gzip.decompress(x)
decoder=lambda x: json.loads(x.decode())
%time S3.generalSave(key, sampleDict, bucket = bucket, compressor=compressor, encoder=encoder )
%time result = S3.generalLoad(key, bucket , decompressor=decompressor, decoder=decoder)
assert result == sampleDict, 'not the same as sample dict'
CPU times: user 30.4 ms, sys: 0 ns, total: 30.4 ms
Wall time: 128 ms
CPU times: user 44.8 ms, sys: 0 ns, total: 44.8 ms
Wall time: 416 ms
check if an object exist
result = S3.exist('', bucket, user=USER, pw=PW, accelerate = True)
print(('doesnt exist', 'exist')[result])
exist
presign download object
url = S3.presign(key=key,
bucket=bucket,
expiry = 1000,
user=USER,
pw=PW)
print(url)
download using signed link
from s3bz.s3bz import Requests
result = Requests.getContentFromUrl(url)
File operations
save without compression
inputPath = '/tmp/tmpFile.txt'
key = 'tmpFile'
downloadPath = '/tmp/downloadTmpFile.txt'
with open(inputPath , 'w')as f:
f.write('hello world')
S3.saveFile(key =key ,path = inputPath,bucket = bucket)
##test
S3.exist(key,bucket)
load without compression
S3.loadFile(key= key , path = downloadPath, bucket = bucket)
##test
with open(downloadPath, 'r') as f:
print(f.read())
delete
result = S3.deleteFile(key, bucket)
## test
S3.exist(key,bucket)
save and load pandas dataframe
### please install in pandas,
### this is not include in the requirements to minimize the size impact
import pandas as pd
df = pd.DataFrame({'test':[1,2,3,4,5],'test2':[2,3,4,5,6]})
S3.saveDataFrame(bucket,key,df)
S3.loadDataFrame(bucket,key)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
s3bz-0.1.6.tar.gz
(13.0 kB
view hashes)
Built Distribution
s3bz-0.1.6-py3-none-any.whl
(11.0 kB
view hashes)