Skip to main content

Objective Oriented Interface for AWS S3, similar to pathlib.

Project description

Documentation Status https://github.com/aws-samples/s3pathlib-project/workflows/CI/badge.svg https://img.shields.io/badge/codecov-100%25-brightgreen https://img.shields.io/pypi/v/s3pathlib.svg https://img.shields.io/pypi/l/s3pathlib.svg https://img.shields.io/pypi/pyversions/s3pathlib.svg https://img.shields.io/pypi/dm/s3pathlib.svg https://img.shields.io/badge/STAR_Me_on_GitHub!--None.svg?style=social
https://img.shields.io/badge/Link-Document-orange.svg https://img.shields.io/badge/Link-API-blue.svg https://img.shields.io/badge/Link-Source_Code-blue.svg https://img.shields.io/badge/Link-Submit_Issue-blue.svg https://img.shields.io/badge/Link-Request_Feature-blue.svg https://img.shields.io/badge/Link-Download-blue.svg

Welcome to s3pathlib Documentation

s3pathlib is a Python package that offers an object-oriented programming (OOP) interface to work with AWS S3 objects and directories. Its API is designed to be similar to the standard library pathlib and is user-friendly. The package also supports versioning in AWS S3.

Quick Start

Import the library, declare an S3Path object

# import
>>> from s3pathlib import S3Path

# construct from string, auto join parts
>>> p = S3Path("bucket", "folder", "file.txt")
# construct from S3 URI works too
>>> p = S3Path("s3://bucket/folder/file.txt")
# construct from S3 ARN works too
>>> p = S3Path("arn:aws:s3:::bucket/folder/file.txt")
>>> p.bucket
'bucket'
>>> p.key
'folder/file.txt'
>>> p.uri
's3://bucket/folder/file.txt'
>>> p.console_url # click to preview it in AWS console
'https://s3.console.aws.amazon.com/s3/object/bucket?prefix=folder/file.txt'
>>> p.arn
'arn:aws:s3:::bucket/folder/file.txt'

Talk to AWS S3 and get some information

# s3pathlib maintains a "context" object that holds the AWS authentication information
# you just need to build your own boto session object and attach to it
>>> import boto3
>>> from s3pathlib import context
>>> context.attach_boto_session(
...     boto3.session.Session(
...         region_name="us-east-1",
...         profile_name="my_aws_profile",
...     )
... )

>>> p = S3Path("bucket", "folder", "file.txt")
>>> p.write_text("a lot of data ...")
>>> p.etag
'3e20b77868d1a39a587e280b99cec4a8'
>>> p.size
56789000
>>> p.size_for_human
'51.16 MB'

# folder works too, you just need to use a tailing "/" to identify that
>>> p = S3Path("bucket", "datalake/")
>>> p.count_objects()
7164 # number of files under this prefix
>>> p.calculate_total_size()
(7164, 236483701963) # 7164 objects, 220.24 GB
>>> p.calculate_total_size(for_human=True)
(7164, '220.24 GB') # 7164 objects, 220.24 GB

Manipulate Folder in S3

Native S3 Write API (those operation that change the state of S3) only operate on object level. And the list_objects API returns 1000 objects at a time. You need additional effort to manipulate objects recursively. s3pathlib CAN SAVE YOUR LIFE

# create a S3 folder
>>> p = S3Path("bucket", "github", "repos", "my-repo/")

# upload all python file from /my-github-repo to s3://bucket/github/repos/my-repo/
>>> p.upload_dir("/my-repo", pattern="**/*.py", overwrite=False)

# copy entire s3 folder to another s3 folder
>>> p2 = S3Path("bucket", "github", "repos", "another-repo/")
>>> p1.copy_to(p2, overwrite=True)

# delete all objects in the folder, recursively, to clean up your test bucket
>>> p.delete()
>>> p2.delete()

S3 Path Filter

Ever think of filter S3 object by it’s attributes like: dirname, basename, file extension, etag, size, modified time? It is supposed to be simple in Python:

>>> s3bkt = S3Path("bucket") # assume you have a lots of files in this bucket
>>> iterproxy = s3bkt.iter_objects().filter(
...     S3Path.size >= 10_000_000, S3Path.ext == ".csv" # add filter
... )

>>> iterproxy.one() # fetch one
S3Path('s3://bucket/larger-than-10MB-1.csv')

>>> iterproxy.many(3) # fetch three
[
    S3Path('s3://bucket/larger-than-10MB-1.csv'),
    S3Path('s3://bucket/larger-than-10MB-2.csv'),
    S3Path('s3://bucket/larger-than-10MB-3.csv'),
]

>>> for p in iterproxy: # iter the rest
...     print(p)

File Like Object for Simple IO

S3Path is file-like object. It support open and context manager syntax out of the box. Here are only some highlight examples:

# Stream big file by line
>>> p = S3Path("bucket", "log.txt")
>>> with p.open("r") as f:
...     for line in f:
...         do what every you want

# JSON io
>>> import json
>>> p = S3Path("bucket", "config.json")
>>> with p.open("w") as f:
...     json.dump({"password": "mypass"}, f)

# pandas IO
>>> import pandas as pd
>>> p = S3Path("bucket", "dataset.csv")
>>> df = pd.DataFrame(...)
>>> with p.open("w") as f:
...     df.to_csv(f)

Now that you have a basic understanding of s3pathlib, let’s read the full document to explore its capabilities in greater depth.

Getting Help

Please use the python-s3pathlib tag on Stack Overflow to get help.

Submit a I want help issue tickets on GitHub Issues

Contributing

Please see the Contribution Guidelines.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

s3pathlib-2.3.1.tar.gz (63.1 kB view details)

Uploaded Source

Built Distribution

s3pathlib-2.3.1-py2.py3-none-any.whl (76.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file s3pathlib-2.3.1.tar.gz.

File metadata

  • Download URL: s3pathlib-2.3.1.tar.gz
  • Upload date:
  • Size: 63.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.13

File hashes

Hashes for s3pathlib-2.3.1.tar.gz
Algorithm Hash digest
SHA256 fd0fe06ef0d67e94ee3626d893deb9583a8a3b5a4e8e45fb183cae398bf60b6f
MD5 31ccf64a7841bc4e51c863205c3bea53
BLAKE2b-256 620ecdcffbc8ebed95a54d39bb26411c0fb64c7daea90223676f862bdb2a1191

See more details on using hashes here.

File details

Details for the file s3pathlib-2.3.1-py2.py3-none-any.whl.

File metadata

  • Download URL: s3pathlib-2.3.1-py2.py3-none-any.whl
  • Upload date:
  • Size: 76.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.8.13

File hashes

Hashes for s3pathlib-2.3.1-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 156aa47cf3d41dd622c317a1bb54182b3d83799916d9f088e16557ba28e40496
MD5 cef9ba3d62af844f9fc923cffb2011a9
BLAKE2b-256 2de59ba187c818eed81afdecbc3a5903ebb7df5c27ad19c42acd9355cb903fcd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page