A repaid Statistical Analysis tool for Climate or Meteorology data.
Project description
SACPY -- A Python Package for Statistical Analysis of Climate
Sacpy, a repaid Statistical Analysis tool for Climate or Meteorology data.
Author : Zilu Meng
e-mail : mzll1202@163.com
version: 0.0.6
Why choose Sacpy?
Quick!
For example, Sacpy is more than 60 times faster than the traditional regression analysis with Python (see speed test).
Turn to climate data customization!
Compatible with commonly used meteorological calculation libraries such as numpy and xarray.
Install
pip install sacpy
Example
example1
Calculate the correlation between SST and nino3.4 index
import numpy as np
import scapy as scp
import matplotlib.pyplot as plt
# load sst
sst = scp.load_sst()['sst']
# get ssta (method=1, Remove linear trend;method=0, Minus multi-year average)
ssta = scp.get_anom(sst,method=1)
# calculate Nino3.4
Nino34 = ssta.loc[:,-5:5,190:240].mean(axis=(1,2))
# regression
linreg = scp.LinReg(np.array(Nino34),np.array(ssta))
# plot
plt.contourf(linreg.corr)
# Significance test
plt.contourf(linreg.p_value,levels=[0, 0.05, 1],zorder=1,
hatches=['..', None],colors="None",)
# save
plt.savefig("./nino34.png")
Result(For a detailed drawing process, see example):
example2
multiple linear regression on Nino3.4 IODIdex and ssta pattern
import numpy as np
import scapy as scp
import matplotlib.pyplot as plt
# load sst
sst = scp.load_sst()['sst']
# get ssta (method=1, Remove linear trend;method=0, Minus multi-year average)
ssta = scp.get_anom(sst,method=1)
# calculate Nino3.4
Nino34 = ssta.loc[:,-5:5,190:240].mean(axis=(1,2))
# calculate IODIdex
IODW = ssta.loc[:,-10:10,50:70].mean(axis=(1,2))
IODE = ssta.loc[:,-10:0,90:110].mean(axis=(1,2))
IODI = +IODW - IODE
# get x
X = np.vstack([np.array(Nino34),np.array(IODI)]).T
# multiple linear regression
MLR = scp.MultLinReg(X,np.array(ssta))
# plot IOD's effect
plt.contourf(MLR.slope[1])
# Significance test
plt.contourf(MLR.pv_i[1],levels=[0, 0.1, 1],zorder=1,
hatches=['..', None],colors="None",)
plt.savefig("../pic/MLR.png")
Result(For a detailed drawing process, see example):
Speed
As a comparison, we use the function corr function in the xarray library and for-loop. The time required to calculate the correlation coefficient between SSTA and nino3.4 for 50 times is shown in the figure below.
It can be seen that we are five times faster than xarray and 60 times faster than forloop.
Moreover, xarray will not return the p value. We can simply check the pvalue attribute of sacpy to get the p value.
Acknowledgements
Thank Prof. Feng Zhu (NUIST,https://github.com/fzhu2e) for his guidance of this project
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.