Skip to main content

Extraction-based Turkish news summarizer.

Project description

SadedeGel: A General Purpose NLP library for Turkish

SadedeGel is initially designed to be a library for unsupervised extraction-based news summarization using several old and new NLP techniques.

Development of the library started as a part of Açık Kaynak Hackathon Programı 2020 in which SadedeGel was the 2nd place winner.

We are keeping on adding features with the goal of becoming a general purpose open source NLP library for Turkish language.

💫 Version 0.21 out now! Check out the release notes here.

Python package Python Version Coverage pypi Version PyPi downloads License Commit Month Commit Week Last Commit Binder Slack Kaggle

📖 Documentation

Documentation
Contribute How to contribute to the sadedeGel project and code base.

💬 Where to ask questions

The SadedeGel project is initialized by @globalmaksimum AI team members @dafajon, @askarbozcan, @mccakir, @husnusensoy and @ertugruldemir.

Other community maintainers

Type Platforms
🚨 Bug Reports GitHub Issue Tracker
🎁 Feature Requests GitHub Issue Tracker
Questions Slack Workspace

Features

  • Several datasets

    • Basic corpus

      • Raw corpus (sadedegel.dataset.load_raw_corpus)
      • Sentences tokenized corpus (sadedegel.dataset.load_sentences_corpus)
      • Human annotated summary corpus (sadedegel.dataset.load_annotated_corpus)
    • Extended corpus

      • Raw corpus (sadedegel.dataset.extended.load_extended_raw_corpus)
      • Sentences tokenized corpus (sadedegel.dataset.extended.load_extended_sents_corpus)
    • TsCorpus(sadedegel.dataset.tscorpus)

    • Various domain specific datasets (e-commerce, social media, tourism etc.)

  • ML based sentence boundary detector (SBD) trained for Turkish language

  • Sadedegel Extractive Summarizers

    • Various baseline summarizers

      • Position Summarizer
      • Length Summarizer
      • Band Summarizer
      • Random Summarizer
    • Various unsupervised/supervised summarizers

      • ROUGE1 Summarizer
      • TextRank Summarizer
      • Cluster Summarizer
      • Lexrank Summarizer
      • BM25 Summarizer
      • TfIdf Summarizer
  • Various Word Tokenizers

    • BERT Tokenizer - Trained tokenizer (pip install sadedegel[bert])
    • Simple Tokenizer - Regex Based
    • IcU Tokenizer (default by 0.19)
  • Various Sparse and Dense Embeddings implemented for Sentences and Document objects.

    • BERT Embeddings (pip install sadedegel[bert])
    • TfIdf Embeddings
  • Word Vectors for your tokens (pip install sadedegel[w2v])

  • A sklearn compatible Feature Extraction API

  • Word Vectors for your tokens (pip install sadedegel[w2v])

  • A sklearn compatible Feature Extraction API

  • [Experimental] Prebuilt models for several common NLP tasks (sadedegel.prebuilt).

from sadedegel.prebuilt import news_classification

model = news_classification.load()

doc_str = ("Bilişim sektörü, günlük devrimlerin yaşandığı ve hızına yetişilemeyen dev bir alan haline geleli uzun bir zaman olmadı. Günümüz bilgisayarlarının tarihi, yarım asırı yeni tamamlarken; yaşanan gelişmeler çok "
"daha büyük ölçekte. Türkiye de bu gelişmelere 1960 yılında Karayolları Umum Müdürlüğü (şimdiki Karayolları Genel Müdürlüğü) için IBM’den satın aldığı ilk bilgisayarıyla dahil oldu. IBM 650 Model I adını taşıyan bilgisayarın "
"satın alınma amacı ise yol yapımında gereken hesaplamaların daha hızlı yapılmasıydı. Türkiye’nin ilk bilgisayar destekli karayolu olan 63 km uzunluğundaki Polatlı - Sivrihisar yolu için yapılan hesaplamalar IBM 650 ile 1 saatte yapıldı. "
"Daha öncesinde 3 - 4 ayı bulan hesaplamaların 1 saate inmesi; teknolojinin, ekonomik ve toplumsal dönüşüme büyük etkide bulunacağının habercisiydi.")

y_pred = model.predict([doc_str])

📖 For more details, refer to sadedegel.ai

Install sadedeGel

  • Operating system: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual Studio)
  • Python version: 3.6+ (only 64 bit)
  • Package managers: pip

pip

Using pip, sadedeGel releases are available as source packages and binary wheels.

pip install sadedegel

or update now

pip install sadedegel -U

When using pip it is generally recommended to install packages in a virtual environment to avoid modifying system state:

python -m venv .env
source .env/bin/activate
pip install sadedegel

Vocabulary Dump

Certaing attributes of SadedeGel's NLP objects are dependent on shipped vocabulary dumps that are created over sadedegel.dataset.extened_corpus via each of the existing SadedeGel tokenizers. Those tokenizers are listed above. If you want to re-train a specific tokenizer's vocabulary with custom settings:

python -m sadedegel.bblock.cli build-vocabulary -t [bert|icu|simple] 

This will create a vocabulary dump using sadedegel.dataset.extended_corpus based on custom user settings.

For all options to customize your vocab dump refer to:

python -m sadedegel.bblock.cli build-vocabulary --help 

Optional

To keep core sadedegel as light as possible we decomposed our initial monolitic design.

To enable BERT embeddings and related capabilities use

pip install sadedegel[bert]

We ship 100-dimension word vectors with the library. If you need to re-train those word embeddings you can use

python -m sadedegel.bblock.cli build-vocabulary -t [bert|icu|simple] --w2v

--w2v option requires w2v option to be installed. To install option use

This will create a vocabulary dump with keyed vectors of arbitrary size using sadedegel.dataset.extended_corpus based on custom user settings.

pip install sadedegel[w2v]

Quickstart with SadedeGel

To load SadedeGel, use sadedegel.load()

from sadedegel import Doc
from sadedegel.dataset import load_raw_corpus
from sadedegel.summarize import Rouge1Summarizer

raw = load_raw_corpus()

d = Doc(next(raw))

summarizer = Rouge1Summarizer()
summarizer(d, k=5)

To trigger sadedeGel NLP pipeline, initialize Doc instance with a document string.

Access all sentences using Python built-in list function.

from sadedegel import Doc

doc_str = ("Bilişim sektörü, günlük devrimlerin yaşandığı ve hızına yetişilemeyen dev bir alan haline geleli uzun bir zaman olmadı. Günümüz bilgisayarlarının tarihi, yarım asırı yeni tamamlarken; yaşanan gelişmeler çok "
"daha büyük ölçekte. Türkiye de bu gelişmelere 1960 yılında Karayolları Umum Müdürlüğü (şimdiki Karayolları Genel Müdürlüğü) için IBM’den satın aldığı ilk bilgisayarıyla dahil oldu. IBM 650 Model I adını taşıyan bilgisayarın "
"satın alınma amacı ise yol yapımında gereken hesaplamaların daha hızlı yapılmasıydı. Türkiye’nin ilk bilgisayar destekli karayolu olan 63 km uzunluğundaki Polatlı - Sivrihisar yolu için yapılan hesaplamalar IBM 650 ile 1 saatte yapıldı. "
"Daha öncesinde 3 - 4 ayı bulan hesaplamaların 1 saate inmesi; teknolojinin, ekonomik ve toplumsal dönüşüme büyük etkide bulunacağının habercisiydi.")

doc = Doc(doc_str)

list(doc)
['Bilişim sektörü, günlük devrimlerin yaşandığı ve hızına yetişilemeyen dev bir alan haline geleli uzun bir zaman olmadı.',
 'Günümüz bilgisayarlarının tarihi, yarım asırı yeni tamamlarken; yaşanan gelişmeler çok daha büyük ölçekte.',
 'Türkiye de bu gelişmelere 1960 yılında Karayolları Umum Müdürlüğü (şimdiki Karayolları Genel Müdürlüğü) için IBM’den satın aldığı ilk bilgisayarıyla dahil oldu.',
 'IBM 650 Model I adını taşıyan bilgisayarın satın alınma amacı ise yol yapımında gereken hesaplamaların daha hızlı yapılmasıydı.',
 'Türkiye’nin ilk bilgisayar destekli karayolu olan 63 km uzunluğundaki Polatlı - Sivrihisar yolu için yapılan hesaplamalar IBM 650 ile 1 saatte yapıldı.',
 'Daha öncesinde 3 - 4 ayı bulan hesaplamaların 1 saate inmesi; teknolojinin, ekonomik ve toplumsal dönüşüme büyük etkide bulunacağının habercisiydi.']

Access sentences by index.

doc[2]
Türkiye de bu gelişmelere 1960 yılında Karayolları Umum Müdürlüğü (şimdiki Karayolları Genel Müdürlüğü) için IBMden satın aldığı ilk bilgisayarıyla dahil oldu.

SadedeGel Server

In order to integrate with your applications we provide a quick summarizer server with sadedeGel.

python3 -m sadedegel.server 

SadedeGel Server on Heroku

SadedeGel Server is hosted on free tier of Heroku cloud services.

PyLint, Flake8 and Bandit

sadedeGel utilized pylint for static code analysis, flake8 for code styling and bandit for code security check.

To run all tests

make lint

Run tests

sadedeGel comes with an extensive test suite. In order to run the tests, you'll usually want to clone the repository and build sadedeGel from source. This will also install the required development dependencies and test utilities defined in the requirements.txt.

Alternatively, you can find out where sadedeGel is installed and run pytest on that directory. Don't forget to also install the test utilities via sadedeGel's requirements.txt:

make test

📓 Kaggle

Youtube Channel

Some videos from sadedeGel YouTube Channel

SkyLab YTU Webinar Playlist

Youtube

Youtube

Youtube

Youtube

Youtube

Youtube

Youtube

Youtube

References

Special Thanks

Our Community Contributors

We would like to thank our community contributors for their bug/enhancement requests and questions to make sadedeGel better everyday

Software Engineering

  • Special thanks to spaCy project for their work in showing us the way to implement a proper python module rather than merely explaining it.

    • We have borrowed many document and style related stuff from their code base :smile:
  • There are a few free-tier service providers we need to thank:

Machine Learning (ML), Deep Learning (DL) and Natural Language Processing (NLP)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sadedegel-0.21.2.tar.gz (49.5 MB view details)

Uploaded Source

Built Distribution

sadedegel-0.21.2-py3-none-any.whl (49.7 MB view details)

Uploaded Python 3

File details

Details for the file sadedegel-0.21.2.tar.gz.

File metadata

  • Download URL: sadedegel-0.21.2.tar.gz
  • Upload date:
  • Size: 49.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for sadedegel-0.21.2.tar.gz
Algorithm Hash digest
SHA256 ede659d9a0d6c0bbbe60fcc2b93d6a957ec13c503a95eccc413821f75e1093d3
MD5 5c5e317121482a1938f0b1e73c5d51e1
BLAKE2b-256 da1a138f91345a46559f8130190c83722791da5e36166acc2893a54bf97a8343

See more details on using hashes here.

File details

Details for the file sadedegel-0.21.2-py3-none-any.whl.

File metadata

  • Download URL: sadedegel-0.21.2-py3-none-any.whl
  • Upload date:
  • Size: 49.7 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for sadedegel-0.21.2-py3-none-any.whl
Algorithm Hash digest
SHA256 79cfb25423178c7381eb6fb1afcf31d576428bddf13a89e68e55a6f9278e7359
MD5 b1f638d6d2d7c55a009ff07a6d6ffd5c
BLAKE2b-256 e27840c004e55bbc19032aafc2bb7f6d0a7a642b54dea69a6e4266b9d46ca445

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page