Skip to main content

Data set loading and annotation facilities for the Simple Annotation Framework

Project description

SAF-Datasets

Dataset loading and annotation facilities for the Simple Annotation Framework

The saf-datasets library provides easy access to Natural Language Processing (NLP) datasets, and tools to facilitate annotation at document, sentence and token levels.

It is being developed to address a need for flexibility in manipulating NLP annotations that is not entirely covered by popular dataset libraries, such as HuggingFace Datasets and torch Datasets, Namely:

  • Including and modifying annotations on existing datasets.
  • Standardized API.
  • Support for complex and multi-level annotations.

saf-datasets is built upon the Simple Annotation Framework (SAF) library, which provides its data model and API.

It also provides annotator classes to automatically label existing and new datasets.

Installation

To install, you can use pip:

pip install saf-datasets

Usage

Loading datasets

from saf_datasets import STSBDataSet

dataset = STSBDataSet()
print(len(dataset))  # Size of the dataset
# 17256
print(dataset[0].surface)  # First sentence in the dataset
# A plane is taking off
print([token.surface for token in dataset[0].tokens])  # Tokens (SpaCy) of the first sentence.
# ['A', 'plane', 'is', 'taking', 'off', '.']
print(dataset[0].annotations)  # Annotations for the first sentence
# {'split': 'train', 'genre': 'main-captions', 'dataset': 'MSRvid', 'year': '2012test', 'sid': '0001', 'score': '5.000', 'id': 0}

# There are no token annotations in this dataset
print([(tok.surface, tok.annotations) for tok in dataset[0].tokens])
# [('A', {}), ('plane', {}), ('is', {}), ('taking', {}), ('off', {}), ('.', {})]

Available datasets: AllNLI, CODWOE, CPAE, EntailmentBank, STSB, Wiktionary, WordNet (Filtered).

Annotating datasets

from saf_datasets import STSBDataSet
from saf_datasets.annotators import SpacyAnnotator

dataset = STSBDataSet()
annotator = SpacyAnnotator()  # Needs spacy and en_core_web_sm to be installed.
annotator.annotate(dataset)

# Now tokens are annotated
for tok in dataset[0].tokens:
    print(tok.surface, tok.annotations)

# A {'pos': 'DET', 'lemma': 'a', 'dep': 'det', 'ctag': 'DT'}
# plane {'pos': 'NOUN', 'lemma': 'plane', 'dep': 'nsubj', 'ctag': 'NN'}
# is {'pos': 'AUX', 'lemma': 'be', 'dep': 'aux', 'ctag': 'VBZ'}
# taking {'pos': 'VERB', 'lemma': 'take', 'dep': 'ROOT', 'ctag': 'VBG'}
# off {'pos': 'ADP', 'lemma': 'off', 'dep': 'prt', 'ctag': 'RP'}
# . {'pos': 'PUNCT', 'lemma': '.', 'dep': 'punct', 'ctag': '.'}

Using with other libraries

saf-datasets provides wrappers for using the datasets with libraries expecting HF or torch datasets:

from saf_datasets import CPAEDataSet
from saf_datasets.wrappers.torch import TokenizedDataSet
from transformers import AutoTokenizer

dataset = CPAEDataSet()
tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left", add_prefix_space=True)
tok_ds = TokenizedDataSet(dataset, tokenizer, max_len=128, one_hot=False)
print(tok_ds[:10])
# tensor([[50256, 50256, 50256,  ...,  2263,   572,    13],
#         [50256, 50256, 50256,  ...,  2263,   572,    13],
#         [50256, 50256, 50256,  ...,   781,  1133,    13],
#         ...,
#         [50256, 50256, 50256,  ...,  2712, 19780,    13],
#         [50256, 50256, 50256,  ...,  2685,    78,    13],
#         [50256, 50256, 50256,  ...,  2685,    78,    13]])

print(tok_ds[:10].shape)
# torch.Size([10, 128])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

saf_datasets-0.6.2.tar.gz (29.1 kB view details)

Uploaded Source

Built Distribution

saf_datasets-0.6.2-py3-none-any.whl (33.9 kB view details)

Uploaded Python 3

File details

Details for the file saf_datasets-0.6.2.tar.gz.

File metadata

  • Download URL: saf_datasets-0.6.2.tar.gz
  • Upload date:
  • Size: 29.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for saf_datasets-0.6.2.tar.gz
Algorithm Hash digest
SHA256 36f58bd31ba386252634f0ab46279ce35746afd6fea4b428b94870feca88e730
MD5 7daad227e1a8d1beb3d9bc14b31268fe
BLAKE2b-256 b7ad1d3cfc551fe63d3a87da32aa4eb6266422987a032ff040080451ddd74be2

See more details on using hashes here.

File details

Details for the file saf_datasets-0.6.2-py3-none-any.whl.

File metadata

  • Download URL: saf_datasets-0.6.2-py3-none-any.whl
  • Upload date:
  • Size: 33.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for saf_datasets-0.6.2-py3-none-any.whl
Algorithm Hash digest
SHA256 495617909c9c70e5c9c04bfd0b408fa20e93eeb0236b804af1c11047a2622992
MD5 a4e44cbc5331fae0ad6750b20b397d6f
BLAKE2b-256 f73cd22d6a6d35784d07d61ed8f2f307026f94c7292a92fb65a2a3ed8704ce73

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page