Skip to main content

Data set loading and annotation facilities for the Simple Annotation Framework

Project description

SAF-Datasets

Dataset loading and annotation facilities for the Simple Annotation Framework

The saf-datasets library provides easy access to Natural Language Processing (NLP) datasets, and tools to facilitate annotation at document, sentence and token levels.

It is being developed to address a need for flexibility in manipulating NLP annotations that is not entirely covered by popular dataset libraries, such as HuggingFace Datasets and torch Datasets, Namely:

  • Including and modifying annotations on existing datasets.
  • Standardized API.
  • Support for complex and multi-level annotations.

saf-datasets is built upon the Simple Annotation Framework (SAF) library, which provides its data model and API.

It also provides annotator classes to automatically label existing and new datasets.

Installation

To install, you can use pip:

pip install saf-datasets

Usage

Loading datasets

from saf_datasets import STSBDataSet

dataset = STSBDataSet()
print(len(dataset))  # Size of the dataset
# 17256
print(dataset[0].surface)  # First sentence in the dataset
# A plane is taking off
print([token.surface for token in dataset[0].tokens])  # Tokens (SpaCy) of the first sentence.
# ['A', 'plane', 'is', 'taking', 'off', '.']
print(dataset[0].annotations)  # Annotations for the first sentence
# {'split': 'train', 'genre': 'main-captions', 'dataset': 'MSRvid', 'year': '2012test', 'sid': '0001', 'score': '5.000', 'id': 0}

# There are no token annotations in this dataset
print([(tok.surface, tok.annotations) for tok in dataset[0].tokens])
# [('A', {}), ('plane', {}), ('is', {}), ('taking', {}), ('off', {}), ('.', {})]

Available datasets: AllNLI, CODWOE, CPAE, EntailmentBank, STSB, Wiktionary, WordNet (Filtered).

Annotating datasets

from saf_datasets import STSBDataSet
from saf_datasets.annotators import SpacyAnnotator

dataset = STSBDataSet()
annotator = SpacyAnnotator()  # Needs spacy and en_core_web_sm to be installed.
annotator.annotate(dataset)

# Now tokens are annotated
for tok in dataset[0].tokens:
    print(tok.surface, tok.annotations)

# A {'pos': 'DET', 'lemma': 'a', 'dep': 'det', 'ctag': 'DT'}
# plane {'pos': 'NOUN', 'lemma': 'plane', 'dep': 'nsubj', 'ctag': 'NN'}
# is {'pos': 'AUX', 'lemma': 'be', 'dep': 'aux', 'ctag': 'VBZ'}
# taking {'pos': 'VERB', 'lemma': 'take', 'dep': 'ROOT', 'ctag': 'VBG'}
# off {'pos': 'ADP', 'lemma': 'off', 'dep': 'prt', 'ctag': 'RP'}
# . {'pos': 'PUNCT', 'lemma': '.', 'dep': 'punct', 'ctag': '.'}

Using with other libraries

saf-datasets provides wrappers for using the datasets with libraries expecting HF or torch datasets:

from saf_datasets import CPAEDataSet
from saf_datasets.wrappers.torch import TokenizedDataSet
from transformers import AutoTokenizer

dataset = CPAEDataSet()
tokenizer = AutoTokenizer.from_pretrained("gpt2", padding_side="left", add_prefix_space=True)
tok_ds = TokenizedDataSet(dataset, tokenizer, max_len=128, one_hot=False)
print(tok_ds[:10])
# tensor([[50256, 50256, 50256,  ...,  2263,   572,    13],
#         [50256, 50256, 50256,  ...,  2263,   572,    13],
#         [50256, 50256, 50256,  ...,   781,  1133,    13],
#         ...,
#         [50256, 50256, 50256,  ...,  2712, 19780,    13],
#         [50256, 50256, 50256,  ...,  2685,    78,    13],
#         [50256, 50256, 50256,  ...,  2685,    78,    13]])

print(tok_ds[:10].shape)
# torch.Size([10, 128])

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

saf_datasets-0.6.4.tar.gz (29.3 kB view details)

Uploaded Source

Built Distribution

saf_datasets-0.6.4-py3-none-any.whl (34.2 kB view details)

Uploaded Python 3

File details

Details for the file saf_datasets-0.6.4.tar.gz.

File metadata

  • Download URL: saf_datasets-0.6.4.tar.gz
  • Upload date:
  • Size: 29.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for saf_datasets-0.6.4.tar.gz
Algorithm Hash digest
SHA256 24229a8f8a49c5a5d7714537b1c9a91c357097e7173b471027de1625be6eec1b
MD5 e0d60bbe0394bce42f2d42b1572590a9
BLAKE2b-256 9541c3f9b6472fe556c9eb9dc9a7a1c17a4fcd3d921d32b6fa6d0c908f455bd1

See more details on using hashes here.

File details

Details for the file saf_datasets-0.6.4-py3-none-any.whl.

File metadata

  • Download URL: saf_datasets-0.6.4-py3-none-any.whl
  • Upload date:
  • Size: 34.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.11.5

File hashes

Hashes for saf_datasets-0.6.4-py3-none-any.whl
Algorithm Hash digest
SHA256 33b5bb40bf0f1a9be03c66b12b2a5f9afb70e753159b1109f6d4dc9b1aab2564
MD5 b28d87692464ef8395f445738fba9572
BLAKE2b-256 e1bd39b824cd2a26b317074443c765e1e47ebd88f640242e3dae1cfefd625883

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page