Skip to main content

package solves expressions

Project description

safe_evaluation

safe_evaluation - is an implementation of polish notation algorithm for mathematical and dataframe operations

how to use

  1. Installation

    pip install safe-evaluation
    
  2. Tutorial

    • import evaluation class
    from safe_evaluation import Evaluator
    
    • initialize evaluator
    evaluator = Evaluator()
    
    • send string that you want to evaluate
    result = evaluator.solve(command="2 + 2")
    
    • method will return result
    print(result)
    
  3. Examples of usage

    • evaluator.solve(command="2 + 2")  # 4
      
    • evaluator.solve(command="lambda x: x * 2")  # lambda x: x * 2
      
    • evaluator.solve(command="2 * x - y", local={"x": 2, "y": 3})  # 1
      
    • import pandas as pd
      
      df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
      evaluator.solve(command="${col1} + ${col2}", df=df)  # 0   4
                                                              1   6
                                                              dtype: int64
      
    • evaluator.solve(command="list(map(lambda x, y: x * 2 + y, range(5), range(3, 8)))")  # [3,6,9,12,15]
      
    • evaluator.solve(command="list(map(lambda x: x + y, [0,1,2,3,4]))", local={"y": 10})  # [10,11,12,13,14]
      
    • import pandas as pd
      
      df = pd.DataFrame(data={'col1': [1, 2, 4, 7], 'col2': [3, 4, 8, 9]})
      evaluator.solve(command="np.mean(${col1}) + np.mean(${col2})", df=df)  # 9.5
      
    • import pandas as pd
      
      df = pd.DataFrame(data={'col1': [1, 2, 4, 7], 'col2': [3, 4, 8, 9]})
      evaluator.solve(command="${col1}.apply(lambda v: v ** 2 > 0).all()", df=df)  # True
      
    • import pandas as pd
      
      df = pd.DataFrame(data={'col1': [1, 2, 4, 7], 'col2': [3, 4, 8, 9]})
      evaluator.solve(command="${col1}.apply(lambda v: 1 if v < 3 else 2)", df=df)  # 0    1
                                                                                       1    1
                                                                                       2    2
                                                                                       3    2
                                                                                       Name: col1, dtype: int64
      
    • from datetime import datetime
      
      import pandas as pd
      
      dates = [datetime(year=2022, month=11, day=11 + i) for i in range(7)]
      df = pd.DataFrame(data={'dates': dates})
      evaluator.solve(command="${dates}.dt.dayofweek", df=df)  # 0    4
                                                                  1    5
                                                                  2    6
                                                                  3    0
                                                                  4    1
                                                                  5    2
                                                                  6    3
                                                                  Name: dates, dtype: int64
      
    • range = evaluator.solve(command="pd.date_range(start='2021-02-05', end='2021-03-05', freq='1D')"")
      len(range)  # 29
      
    • df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]})
      sorted_df = evaluator.solve(command="${__df}.sort_values('col2', ascending=False)", df=df)  #    col1  col2
                                                                                                     0     2     4
                                                                                                     1     1     3
      
  4. Supported operations

    • in is not supported yet
    • comparation (<=, <, > , >=, !=, ==)
    • unary (+, -)
    • boolean (~, &, |, ^)
    • binary (+, -, /, *, //, %, **)
  5. Supported functions

    • map, filter, list, range
    • bool, int, float, complex, str
    • numpy module functions (np.mean, etc.)
    • pandas module functions (pd.date_range, etc.)
    • anonymous functions
  6. Supported access to data

    • ${col_name} is same as df['col_name']
    • ${__df} is same as df
  7. It is possible to use your own class for preprocessing or calculating

    • from safe_evaluation import Evaluator, BasePreprocessor
      from safe_evaluation.constants import TypeOfCommand
      
      class MyPreprocessor(BasePreprocessor):
          def __init__(self, evaluator):
              self.evaluator = evaluator
      
          def prepare(self, command, df, local):
              return [(TypeOfCommand.VARIABLE, 'v'), '**', (TypeOfCommand.VALUE, 2), '>', (TypeOfCommand.VALUE, 5)]
      
      
      evaluator = Evaluator(preprocessor=MyPreprocessor)
      
      expression = 'v ** 2 > 5'
      
      output = evaluator.solve(expression, local={'v': 2})    #    False
      
  8. It is possible to use your own settings

    • from safe_evaluation import Evaluator, Settings
      
      evaluator = Evaluator()
      settings = Settings(allowed_funcs=['filter', 'list'])
      evaluator.change_settings(settings)
      
      output = evaluator.solve("list(filter(lambda x: x < 0, [-1,0,1]))")   #    [-1]
      
    • from safe_evaluation import Evaluator, Settings
      
      evaluator = Evaluator()
      settings = Settings(allowed_funcs=['list'])
      evaluator.change_settings(settings)
      
      output = evaluator.solve("list(filter(lambda x: x < 0, [-1,0,1]))")   #    Exception: Unsupported function filter
      

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

safe_evaluation-0.1.15.tar.gz (13.4 kB view details)

Uploaded Source

File details

Details for the file safe_evaluation-0.1.15.tar.gz.

File metadata

  • Download URL: safe_evaluation-0.1.15.tar.gz
  • Upload date:
  • Size: 13.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for safe_evaluation-0.1.15.tar.gz
Algorithm Hash digest
SHA256 ab5d93401c7a2d2a3ae42a58dff2bf0fe04cda35b4f8a2e60a63df62bf41deda
MD5 0cd411fba1561e2113ed9c3cd0f41aaa
BLAKE2b-256 6b0f44168bf260a34569cf03d62a74b0f5a1b1a89ae6f91e4f23a6da95c7ce59

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page