Skip to main content

Structured, flexible, and secure configuration management for Python with CLI support.

Project description

SafeConfig Library


PyPI - Downloads

Overview

SafeConfig provides a structured and flexible way to define, validate, and manage configurations for your Python applications. It supports hierarchical configuration structures with fields that can be variables, arrays, or nested structures. It also includes a command-line interface (CLI) parser to easily override configurations via CLI arguments.

Features

  • Define hierarchical configurations with nested structures.
  • Support for variable, array, and struct field types.
  • Validation of field values.
  • Load and save configurations from/to JSON and YAML files.
  • Override configurations using command-line arguments.

Installation

To install the library, simply run:

pip install safeconfig

Usage

Defining a Configuration Schema

To define a schema, create a class that inherits from Struct and define the fields using Variable, Array, and other Struct subclasses.

from safeconfig import Variable, Array, Struct

class TrainerConfig(Struct):
    learning_rate = Variable(float, description="Learning rate for training", default=0.001)
    epochs = Variable(int, description="Number of training epochs", optional=True)
    data = Array(str, description="Dataset paths.")

Create a Configuration File

Here is an example configuration file in YAML format:

learning_rate: 0.01
epochs: 10
data:
  - "/data/dataset1"
  - "/data/dataset2"

Loading and Saving Configuration Files

You can load the configuration from a JSON or YAML file using the read method.

config = TrainerConfig()
config.read("path/to/config.yaml")

Note that the Struct will be used as a schema to validate all the attributes.

Similarly, you can save the configuration to a JSON or YAML file using the write method.

config.write("path/to/config.yaml")

Accessing and Modifying the Configuration

You can access and modify the configuration fields directly or using the set and get methods.

# Accessing fields
print(config.learning_rate)
print(config.data)

# Modifying fields
config.learning_rate = 0.01
config.data[0] = '/path/to/data'

# Using set and get methods
config.set({'learning_rate': 0.01, 'data': ['/path/to/data']})
print(config.get())

Using the CLI Parser

The CLI parser allows you to override configuration values using command-line arguments. It also supports loading configurations from a file specified via CLI.

from safeconfig import CLIParser

if __name__ == "__main__":
    parser = CLIParser(TrainerConfig())
    config = parser.parse_args()
    print(config)

Now you can load configuration files by passing a config file path or override fields with corresponding command line arguments:

python your_script.py --config path/to/config.yaml \
--learning_rate 0.01 \
--data /data/dataset1 /data/dataset2
--print_config

Help command will is automatically generated based on the schema:

python your_script.py --help

Contributing

Contributions are welcome. Please fork the repository and submit a pull request with your changes.

License

This project is licensed under the MIT License. See the LICENSE file for more details.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

safeconfig-1.0.7.tar.gz (11.1 kB view details)

Uploaded Source

File details

Details for the file safeconfig-1.0.7.tar.gz.

File metadata

  • Download URL: safeconfig-1.0.7.tar.gz
  • Upload date:
  • Size: 11.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for safeconfig-1.0.7.tar.gz
Algorithm Hash digest
SHA256 e3cdc846522e8966aa9e4b5dfd618f5ae662a2d9213633f9b34c4e0adb8fa3da
MD5 26d72f2766d496059efa7dc25ccf932e
BLAKE2b-256 744f289a89031e3c91378cee247c98d673b926d90e4cda9cb8cc4042f79c5ad5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page