Skip to main content

SageWorks: A Python WorkBench for creating and deploying AWS SageMaker Models

Project description

Recent News

SageWorks is partnering with AWS® to accelerate your Machine Learning Pipelines development with our new Dashboard for ML Pipelines. Getting started with SageWorks is a snap and can be billed through AWS.

Welcome to SageWorks

The SageWorks framework makes AWS® both easier to use and more powerful. SageWorks handles all the details around updating and managing a complex set of AWS Services. With a simple-to-use Python API and a beautiful set of web interfaces, SageWorks makes creating AWS ML pipelines a snap. It also dramatically improves both the usability and visibility across the entire spectrum of services: Glue Job, Athena, Feature Store, Models, and Endpoints, SageWorks makes it easy to build production ready, AWS powered, machine learning pipelines.

sageworks_new_light

Full AWS ML OverView

  • Health Monitoring 🟢
  • Dynamic Updates
  • High Level Summary

Drill-Down Views

  • Incoming Data
  • Glue Jobs
  • DataSources
  • FeatureSets
  • Models
  • Endpoints

Private SaaS Architecture

Secure your Data, Empower your ML Pipelines

SageWorks is architected as a Private SaaS (also called BYOC: Bring Your Own Cloud). This hybrid architecture is the ultimate solution for businesses that prioritize data control and security. SageWorks deploys as an AWS Stack within your own cloud environment, ensuring compliance with stringent corporate and regulatory standards. It offers the flexibility to tailor solutions to your specific business needs through our comprehensive plugin support, both components and full web interfaces. By using SageWorks, you maintain absolute control over your data while benefiting from the power, security, and scalability of AWS cloud services. SageWorks Private SaaS Architecture

private_saas_compare

API Installation

  • pip install sageworks Installs SageWorks

  • sageworks Runs the SageWorks REPL/Initial Setup

For the full instructions for connecting your AWS Account see:

SageWorks Presentations

Even though SageWorks makes AWS easier, it's taking something very complex (Full AWS ML Pipelines/Services) and making it less complex. SageWorks has a depth and breadth of functionality so we've provided higher level conceptual documentation See: SageWorks Presentations

SageWorks Documentation

sageworks_api

The SageWorks documentation SageWorks Docs covers our in-depth Python API and contains code examples. The code examples are provided in the Github repo examples/ directory. For a full code listing of any example please visit our SageWorks Examples

Questions?

The SuperCowPowers team is happy to anser any questions you may have about AWS and SageWorks. Please contact us at sageworks@supercowpowers.com or chat us up on Discord

SageWorks Beta Program

Using SageWorks will minimize the time and manpower needed to incorporate AWS ML into your organization. If your company would like to be a SageWorks Beta Tester, contact us at sageworks@supercowpowers.com.

Using SageWorks with Additional Packages

pip install sageworks             # Installs SageWorks with Core Dependencies
pip install 'sageworks[ml-tools]' # + Shap and NetworkX
pip install 'sageworks[chem]'     # + RDKIT and Mordred (community)
pip install 'sageworks[ui]'       # + Plotly/Dash
pip install 'sageworks[dev]'      # + Pytest/flake8/black
pip install 'sageworks[all]'      # + All the things :)

*Note: Shells may interpret square brackets as globs, so the quotes are needed

Contributions

If you'd like to contribute to the SageWorks project, you're more than welcome. All contributions will fall under the existing project license. If you are interested in contributing or have questions please feel free to contact us at sageworks@supercowpowers.com.

® Amazon Web Services, AWS, the Powered by AWS logo, are trademarks of Amazon.com, Inc. or its affiliates

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sageworks-0.8.7.3.tar.gz (3.6 MB view details)

Uploaded Source

Built Distribution

sageworks-0.8.7.3-py2.py3-none-any.whl (337.4 kB view details)

Uploaded Python 2Python 3

File details

Details for the file sageworks-0.8.7.3.tar.gz.

File metadata

  • Download URL: sageworks-0.8.7.3.tar.gz
  • Upload date:
  • Size: 3.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.13

File hashes

Hashes for sageworks-0.8.7.3.tar.gz
Algorithm Hash digest
SHA256 ca12e533bc680e052f30d5883bf0f8f5cd3e4b307b3dfe043a6a22b390cd200e
MD5 7f60fe70290497fdee4346ecd13e68f9
BLAKE2b-256 c1312de0b1381418a71c529dab6fb4a9ae15df3e7c1df23c2f2d1eb967b745bb

See more details on using hashes here.

File details

Details for the file sageworks-0.8.7.3-py2.py3-none-any.whl.

File metadata

  • Download URL: sageworks-0.8.7.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 337.4 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.13

File hashes

Hashes for sageworks-0.8.7.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 adf573ca858f82e60c8869d645cd763da3b35533921c92193465eec4d72d5f2a
MD5 7bdc2e00a1b89b323154ba143403c8c2
BLAKE2b-256 b278891204d780132a62beb5e7e4fd2015bf4e42838c07bf3829695dbd243ebd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page