Skip to main content

A vision library for performing sliced inference on large images/small objects

Project description

SAHI: Slicing Aided Hyper Inference

A vision library for performing sliced inference on large images/small objects.

teaser

downloads pypi version conda version ci

Overview

Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems.

Getting started

Blogpost

Check the official SAHI blog post.

Installation

  • Install sahi using conda:
conda install -c obss sahi
  • Install sahi using pip:
pip install sahi
  • Install your desired version of pytorch and torchvision:
pip install torch torchvision
  • Install your desired detection framework (such as mmdet):
pip install mmdet

Usage

  • Sliced inference:
result = get_sliced_prediction(
    image,
    detection_model,
    slice_height = 256,
    slice_width = 256,
    overlap_height_ratio = 0.2,
    overlap_width_ratio = 0.2
)

Refer to inference notebook for detailed usage.

  • Slice an image:
from sahi.slicing import slice_image

slice_image_result, num_total_invalid_segmentation = slice_image(
    image=image_path,
    output_file_name=output_file_name,
    output_dir=output_dir,
    slice_height=256,
    slice_width=256,
    overlap_height_ratio=0.2,
    overlap_width_ratio=0.2,
)
  • Slice a coco formatted dataset:
from sahi.slicing import slice_coco

coco_dict, coco_path = slice_coco(
    coco_annotation_file_path=coco_annotation_file_path,
    image_dir=image_dir,
    slice_height=256,
    slice_width=256,
    overlap_height_ratio=0.2,
    overlap_width_ratio=0.2,
)

Refer to slicing notebook for detailed usage.

Scripts

Find detailed info on script usage (predict, coco2yolov5, coco_error_analysis) at SCRIPTS.md.

COCO Utilities

Find detailed info on COCO utilities (yolov5 conversion, slicing, subsampling, merging, splitting) at COCO.md.

Adding new detection framework support

sahi library currently only supports MMDetection models. However it is easy to add new frameworks.

All you need to do is, creating a new class in model.py that implements DetectionModel class. You can take the MMDetection wrapper as a reference.

Contributers

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sahi-0.3.10.tar.gz (38.4 kB view details)

Uploaded Source

Built Distribution

sahi-0.3.10-py3-none-any.whl (42.9 kB view details)

Uploaded Python 3

File details

Details for the file sahi-0.3.10.tar.gz.

File metadata

  • Download URL: sahi-0.3.10.tar.gz
  • Upload date:
  • Size: 38.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for sahi-0.3.10.tar.gz
Algorithm Hash digest
SHA256 4470400b7a1168165c85c3c12b20d4c22b11df6135d1f4c77c4644d919694851
MD5 36f5808e47365d9871a111e443ede7de
BLAKE2b-256 04b8f94c4bc7f1505c3821110a10d86963b69f7303d736419bd98948a9c54c23

See more details on using hashes here.

File details

Details for the file sahi-0.3.10-py3-none-any.whl.

File metadata

  • Download URL: sahi-0.3.10-py3-none-any.whl
  • Upload date:
  • Size: 42.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for sahi-0.3.10-py3-none-any.whl
Algorithm Hash digest
SHA256 465ade6b0f8915ff1b35386f4e1d254ce9859d847a1684e397adfc54e81ea607
MD5 b54cdeb2d145a55b0c474a37f4e6640b
BLAKE2b-256 73cb9216b146c4b91be043278ebb2af330e3c2e142094992162a671e0e47c81b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page