Skip to main content

A vision library for performing sliced inference on large images/small objects

Project description

SAHI: Slicing Aided Hyper Inference

A vision library for performing sliced inference on large images/small objects.

teaser

downloads pypi version conda version ci

Overview

Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems.

Getting started

Blogpost

Check the official SAHI blog post.

Installation

  • Install sahi using conda:
conda install -c obss sahi
  • Install sahi using pip:
pip install sahi
  • Install your desired version of pytorch and torchvision:
pip install torch torchvision
  • Install your desired detection framework (such as mmdet):
pip install mmdet

Usage

  • Sliced inference:
result = get_sliced_prediction(
    image,
    detection_model,
    slice_height = 256,
    slice_width = 256,
    overlap_height_ratio = 0.2,
    overlap_width_ratio = 0.2
)

Refer to inference notebook for detailed usage.

  • Slice an image:
from sahi.slicing import slice_image

slice_image_result, num_total_invalid_segmentation = slice_image(
    image=image_path,
    output_file_name=output_file_name,
    output_dir=output_dir,
    slice_height=256,
    slice_width=256,
    overlap_height_ratio=0.2,
    overlap_width_ratio=0.2,
)
  • Slice a coco formatted dataset:
from sahi.slicing import slice_coco

coco_dict, coco_path = slice_coco(
    coco_annotation_file_path=coco_annotation_file_path,
    image_dir=image_dir,
    slice_height=256,
    slice_width=256,
    overlap_height_ratio=0.2,
    overlap_width_ratio=0.2,
)

Refer to slicing notebook for detailed usage.

Scripts

Find detailed info on script usage (predict, coco2yolov5, coco_error_analysis) at SCRIPTS.md.

COCO Utilities

Find detailed info on COCO utilities (yolov5 conversion, slicing, subsampling, merging, splitting) at COCO.md.

Adding new detection framework support

sahi library currently only supports MMDetection models. However it is easy to add new frameworks.

All you need to do is, creating a new class in model.py that implements DetectionModel class. You can take the MMDetection wrapper as a reference.

Contributers

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sahi-0.3.13.tar.gz (39.8 kB view details)

Uploaded Source

Built Distribution

sahi-0.3.13-py3-none-any.whl (43.6 kB view details)

Uploaded Python 3

File details

Details for the file sahi-0.3.13.tar.gz.

File metadata

  • Download URL: sahi-0.3.13.tar.gz
  • Upload date:
  • Size: 39.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for sahi-0.3.13.tar.gz
Algorithm Hash digest
SHA256 4b94ac8f47b1cad4ec5df121dc654301ae1cd86bdc6bf175f586bfbcfb8bdbf8
MD5 4879e80aec0361356b8221d69b81ce0d
BLAKE2b-256 4564b654661d2bab6c8d2cb60fb1c3a68398020e43673fcfe175cd79dd8c6ef5

See more details on using hashes here.

File details

Details for the file sahi-0.3.13-py3-none-any.whl.

File metadata

  • Download URL: sahi-0.3.13-py3-none-any.whl
  • Upload date:
  • Size: 43.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.5

File hashes

Hashes for sahi-0.3.13-py3-none-any.whl
Algorithm Hash digest
SHA256 980055e4ff4499866e7457daa1ee2831b2121a8ab8ea5edd7e015adfa53f89d5
MD5 a32726f52c292dea37a1cc10567e2731
BLAKE2b-256 132855f57071b93d0015a02a411bfdf101b83b58709d8e57d954b18f7a979a76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page