Skip to main content

A vision library for performing sliced inference on large images/small objects

Project description

SAHI: Slicing Aided Hyper Inference

A vision library for performing sliced inference on large images/small objects.

teaser

downloads pypi version conda version ci

Overview

Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems.

Getting started

Blogpost

Check the official SAHI blog post.

Installation

  • Install sahi using pip:
pip install sahi
  • Install your desired version of pytorch and torchvision:
pip install torch torchvision
  • Install your desired detection framework (such as mmdet or yolov5):
pip install mmdet mmcv
pip install yolov5

Usage

  • Sliced inference:
result = get_sliced_prediction(
    image,
    detection_model,
    slice_height = 256,
    slice_width = 256,
    overlap_height_ratio = 0.2,
    overlap_width_ratio = 0.2
)

Refer to YOLOv5 Inference Notebook or MMDetection Inference Notebook for detailed usage.

  • Slice an image:
from sahi.slicing import slice_image

slice_image_result, num_total_invalid_segmentation = slice_image(
    image=image_path,
    output_file_name=output_file_name,
    output_dir=output_dir,
    slice_height=256,
    slice_width=256,
    overlap_height_ratio=0.2,
    overlap_width_ratio=0.2,
)
  • Slice a coco formatted dataset:
from sahi.slicing import slice_coco

coco_dict, coco_path = slice_coco(
    coco_annotation_file_path=coco_annotation_file_path,
    image_dir=image_dir,
    slice_height=256,
    slice_width=256,
    overlap_height_ratio=0.2,
    overlap_width_ratio=0.2,
)

Refer to slicing notebook for detailed usage.

Scripts

Find detailed info on script usage (predict, coco2yolov5, coco_error_analysis) at SCRIPTS.md.

COCO Utilities

Find detailed info on COCO utilities (yolov5 conversion, slicing, subsampling, filtering, merging, splitting) at COCO.md.

Adding new detection framework support

sahi library currently supports all YOLOv5 models and MMDetection models. Moreover, it is easy to add new frameworks.

All you need to do is, creating a new class in model.py that implements DetectionModel class. You can take the MMDetection wrapper or YOLOv5 wrapper as a reference.

Contributers

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sahi-0.4.3.tar.gz (43.7 kB view details)

Uploaded Source

Built Distribution

sahi-0.4.3-py3-none-any.whl (48.3 kB view details)

Uploaded Python 3

File details

Details for the file sahi-0.4.3.tar.gz.

File metadata

  • Download URL: sahi-0.4.3.tar.gz
  • Upload date:
  • Size: 43.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for sahi-0.4.3.tar.gz
Algorithm Hash digest
SHA256 ea27bf8d798004b6141a655fe8e091d83f2f91d7828cf42f639bad66b9f73155
MD5 360a16076f15271fed82b4109c53ce72
BLAKE2b-256 f7fede24e78701a39d637881ba50dc37009d3cad8d247444f9785b6b405d2cea

See more details on using hashes here.

File details

Details for the file sahi-0.4.3-py3-none-any.whl.

File metadata

  • Download URL: sahi-0.4.3-py3-none-any.whl
  • Upload date:
  • Size: 48.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for sahi-0.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 019d6808c78578538d0e4bbfb5c8eb4b510d8ac962ffbf369a68043b99b9dc8e
MD5 b078ee0312263edc69eeeb0aabbf102f
BLAKE2b-256 80effdf0255c50260f4d110b6f9a97d6db4de3537f8c3bdbcb71047c3154a291

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page