Skip to main content

Python interface to the Salesforce.com Bulk API.

Project description

travis-badge

Salesforce Bulk

Python client library for accessing the asynchronous Salesforce.com Bulk API.

Installation

pip install salesforce-bulk-2-7

Authentication

To access the Bulk API you need to authenticate a user into Salesforce. The easiest way to do this is just to supply username, password and security_token. This library will use the simple-salesforce package to handle password based authentication.

from salesforce-bulk-2-7 import SalesforceBulk

bulk = SalesforceBulk(username=username, password=password, security_token=security_token)
...

Alternatively if you run have access to a session ID and instance_url you can use those directly:

from urlparse import urlparse
from salesforce-bulk-2-7 import SalesforceBulk

bulk = SalesforceBulk(sessionId=sessionId, host=urlparse(instance_url).hostname)
...

Operations

The basic sequence for driving the Bulk API is:

  1. Create a new job

  2. Add one or more batches to the job

  3. Close the job

  4. Wait for each batch to finish

Bulk Query

bulk.create_query_job(object_name, contentType='JSON')

Using API v39.0 or higher, you can also use the queryAll operation:

bulk.create_queryall_job(object_name, contentType='JSON')

Example

import json
from salesforce-bulk-2-7.util import IteratorBytesIO

job = bulk.create_query_job("Contact", contentType='JSON')
batch = bulk.query(job, "select Id,LastName from Contact")
bulk.close_job(job)
while not bulk.is_batch_done(batch):
    sleep(10)

for result in bulk.get_all_results_for_query_batch(batch):
    result = json.load(IteratorBytesIO(result))
    for row in result:
        print row # dictionary rows

Same example but for CSV:

import unicodecsv

job = bulk.create_query_job("Contact", contentType='CSV')
batch = bulk.query(job, "select Id,LastName from Contact")
bulk.close_job(job)
while not bulk.is_batch_done(batch):
    sleep(10)

for result in bulk.get_all_results_for_query_batch(batch):
    reader = unicodecsv.DictReader(result, encoding='utf-8')
    for row in reader:
        print(row) # dictionary rows

Note that while CSV is the default for historical reasons, JSON should be prefered since CSV has some drawbacks including its handling of NULL vs empty string.

PK Chunk Header

If you are querying a large number of records you probably want to turn on PK Chunking:

bulk.create_query_job(object_name, contentType='CSV', pk_chunking=True)

That will use the default setting for chunk size. You can use a different chunk size by providing a number of records per chunk:

bulk.create_query_job(object_name, contentType='CSV', pk_chunking=100000)

Additionally if you want to do something more sophisticated you can provide a header value:

bulk.create_query_job(object_name, contentType='CSV', pk_chunking='chunkSize=50000; startRow=00130000000xEftMGH')

Additionally if you want to set a http header yourself, you can pass a list of custom header values that will be added to the create job salesforce bulk api call:

bulk.create_query_job(object_name, contentType='CSV', pk_chunking='chunkSize=50000; startRow=00130000000xEftMGH', extra_headers={'Sforce-Disable-Batch-Retry':'TRUE'})

Bulk Insert, Update, Delete

All Bulk upload operations work the same. You set the operation when you create the job. Then you submit one or more documents that specify records with columns to insert/update/delete. When deleting you should only submit the Id for each record.

For efficiency you should use the post_batch method to post each batch of data. (Note that a batch can have a maximum 10,000 records and be 1GB in size.) You pass a generator or iterator into this function and it will stream data via POST to Salesforce. For help sending CSV formatted data you can use the salesforce_bulk.CsvDictsAdapter class. It takes an iterator returning dictionaries and returns an iterator which produces CSV data.

Full example:

from salesforce-bulk-2-7 import CsvDictsAdapter

job = bulk.create_insert_job("Account", contentType='CSV')
accounts = [dict(Name="Account%d" % idx) for idx in xrange(5)]
csv_iter = CsvDictsAdapter(iter(accounts))
batch = bulk.post_batch(job, csv_iter)
bulk.wait_for_batch(job, batch)
bulk.close_job(job)
print("Done. Accounts uploaded.")

Concurrency mode

When creating the job, pass concurrency='Serial' or concurrency='Parallel' to set the concurrency mode for the job.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

salesforce-bulk-2-7-2.2.7.tar.gz (12.0 kB view details)

Uploaded Source

Built Distribution

salesforce_bulk_2_7-2.2.7-py2.py3-none-any.whl (21.5 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file salesforce-bulk-2-7-2.2.7.tar.gz.

File metadata

  • Download URL: salesforce-bulk-2-7-2.2.7.tar.gz
  • Upload date:
  • Size: 12.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/44.1.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/2.7.16

File hashes

Hashes for salesforce-bulk-2-7-2.2.7.tar.gz
Algorithm Hash digest
SHA256 25b93e459bb35ee8567c38fa88d82dd742b72af8a6ef40bc3740fedea99bb89c
MD5 b78db6d06ac2ee882b8f7d6728f84bb5
BLAKE2b-256 64ee92669ab10de79f68b6663f6f61e0ab15031715e97b54dde65e5494aa5ee1

See more details on using hashes here.

File details

Details for the file salesforce_bulk_2_7-2.2.7-py2.py3-none-any.whl.

File metadata

  • Download URL: salesforce_bulk_2_7-2.2.7-py2.py3-none-any.whl
  • Upload date:
  • Size: 21.5 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/44.1.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/2.7.16

File hashes

Hashes for salesforce_bulk_2_7-2.2.7-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 a0bc385c1d1f042cd4d86e2a7ec5770cc4f419befa8d9a192764bb7edf34e03f
MD5 3806c26c3936777f1834b77c4dbcbe28
BLAKE2b-256 92e22813067edde046389e1b19a208c0807f04107024ad60be59b1d988649229

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page