Skip to main content

Tools for global sensitivity analysis. Contains Sobol', Morris, FAST, DGSM, PAWN, HDMR, Moment Independent and fractional factorial methods

Project description

https://raw.githubusercontent.com/SALib/SALib/main/docs/assets/logo.png

Sensitivity Analysis Library (SALib)

Python implementations of commonly used sensitivity analysis methods. Useful in systems modeling to calculate the effects of model inputs or exogenous factors on outputs of interest.

Documentation: ReadTheDocs

Requirements: NumPy, SciPy, matplotlib, pandas, Python 3 (from SALib v1.2 onwards SALib does not officially support Python 2)

Installation: pip install SALib or pip install . or conda install SALib

Build Status: Build Status Test Coverage: Coverage Status

Included methods

Contributing: see here

Quick Start

Procedural approach

from SALib.sample import saltelli
from SALib.analyze import sobol
from SALib.test_functions import Ishigami
import numpy as np

problem = {
  'num_vars': 3,
  'names': ['x1', 'x2', 'x3'],
  'bounds': [[-np.pi, np.pi]]*3
}

# Generate samples
param_values = saltelli.sample(problem, 1024)

# Run model (example)
Y = Ishigami.evaluate(param_values)

# Perform analysis
Si = sobol.analyze(problem, Y, print_to_console=True)
# Returns a dictionary with keys 'S1', 'S1_conf', 'ST', and 'ST_conf'
# (first and total-order indices with bootstrap confidence intervals)

It’s also possible to specify the parameter bounds in a file with 3 columns:

# name lower_bound upper_bound
P1 0.0 1.0
P2 0.0 5.0
...etc.

Then the problem dictionary above can be created from the read_param_file function:

from SALib.util import read_param_file
problem = read_param_file('/path/to/file.txt')
# ... same as above

Lots of other options are included for parameter files, as well as a command-line interface. See the advanced section in the documentation.

Method chaining approach

Chaining calls is supported from SALib v1.4

from SALib import ProblemSpec
from SALib.test_functions import Ishigami

import numpy as np


# By convention, we assign to "sp" (for "SALib Problem")
sp = ProblemSpec({
  'names': ['x1', 'x2', 'x3'],   # Name of each parameter
  'bounds': [[-np.pi, np.pi]]*3,  # bounds of each parameter
  'outputs': ['Y']               # name of outputs in expected order
})

(sp.sample_saltelli(1024, calc_second_order=True)
   .evaluate(Ishigami.evaluate)
   .analyze_sobol(print_to_console=True))

print(sp)

# Samples, model results and analyses can be extracted:
print(sp.samples)
print(sp.results)
print(sp.analysis)

# Basic plotting functionality is also provided
sp.plot()

The above is equivalent to the procedural approach shown previously.

Also check out the FAQ and examples for a full description of options for each method.

How to cite SALib

If you would like to use our software, please cite it using the following:

Iwanaga, T., Usher, W., & Herman, J. (2022). Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity analyses. Socio-Environmental Systems Modelling, 4, 18155. doi:10.18174/sesmo.18155

Herman, J. and Usher, W. (2017) SALib: An open-source Python library for sensitivity analysis. Journal of Open Source Software, 2(9). doi:10.21105/joss.00097

paper status

If you use BibTeX, cite using the following entries:

@article{Iwanaga2022,
  title = {Toward {SALib} 2.0: {Advancing} the accessibility and interpretability of global sensitivity analyses},
  volume = {4},
  url = {https://sesmo.org/article/view/18155},
  doi = {10.18174/sesmo.18155},
  journal = {Socio-Environmental Systems Modelling},
  author = {Iwanaga, Takuya and Usher, William and Herman, Jonathan},
  month = may,
  year = {2022},
  pages = {18155},
}

@article{Herman2017,
  doi = {10.21105/joss.00097},
  url = {https://doi.org/10.21105/joss.00097},
  year  = {2017},
  month = {jan},
  publisher = {The Open Journal},
  volume = {2},
  number = {9},
  author = {Jon Herman and Will Usher},
  title = {{SALib}: An open-source Python library for Sensitivity Analysis},
  journal = {The Journal of Open Source Software}
}

Projects that use SALib

Many projects now use the Global Sensitivity Analysis features provided by SALib. Here is a selection:

Software

Blogs

Videos

If you would like to be added to this list, please submit a pull request, or create an issue.

Many thanks for using SALib.

How to contribute

See here for how to contribute to SALib.

License

Copyright (C) 2012-2019 Jon Herman, Will Usher, and others. Versions v0.5 and later are released under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

salib-1.5.2.tar.gz (725.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

salib-1.5.2-py3-none-any.whl (780.1 kB view details)

Uploaded Python 3

File details

Details for the file salib-1.5.2.tar.gz.

File metadata

  • Download URL: salib-1.5.2.tar.gz
  • Upload date:
  • Size: 725.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.28.1

File hashes

Hashes for salib-1.5.2.tar.gz
Algorithm Hash digest
SHA256 a8eeedc4e87cf070f7ef450b76cdecd120d1e5c602a9c35855ec7777591f949f
MD5 bf8bbc0cef5ad63219a3dbd42f0d6bbb
BLAKE2b-256 1663bdde6c303e95e2c819c668076fb3255f4453ee2041103d0edd18a90b6839

See more details on using hashes here.

File details

Details for the file salib-1.5.2-py3-none-any.whl.

File metadata

  • Download URL: salib-1.5.2-py3-none-any.whl
  • Upload date:
  • Size: 780.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.28.1

File hashes

Hashes for salib-1.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6f4b6bebc1eeed1d081c8f951fa8c2ad7b0cd8a7159d206af48ef137cc806c43
MD5 4e9913e0f0685c5db6722ca5c63c262b
BLAKE2b-256 13e29fbf2d571c0d5360f9cf6656de6c94b273d08ede1b628f23f319fa1a910d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page