Skip to main content

A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

Project description

sam4onnx

A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

Key concept

  • Specify an arbitrary OP name and Constant type INPUT name or an arbitrary OP name and Attribute name, and pass the modified constants to rewrite the parameters of the relevant OP.
  • Two types of input are accepted: .onnx file input and onnx.ModelProto format objects.
  • To design the operation to be simple, only a single OP can be specified.
  • Attributes and constants are forcibly rewritten, so the integrity of the entire graph is not checked in detail.

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U sam4onnx

1-2. Docker

https://github.com/PINTO0309/simple-onnx-processing-tools#docker

2. CLI Usage

$ sam4onnx -h

usage:
    sam4onnx [-h]
    -if INPUT_ONNX_FILE_PATH
    -of OUTPUT_ONNX_FILE_PATH
    [-on OP_NAME]
    [-a NAME DTYPE VALUE]
    [-da DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...]]
    [-ic NAME DTYPE VALUE]
    [-n]

optional arguments:
  -h, --help
    show this help message and exit

  -if INPUT_ONNX_FILE_PATH, --input_onnx_file_path INPUT_ONNX_FILE_PATH
    Input onnx file path.

  -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
    Output onnx file path.

  -on OP_NAME, --op_name OP_NAME
    OP name of the attributes to be changed.
    When --attributes is specified, --op_name must always be specified.
    e.g. --op_name aaa

  -a ATTRIBUTES ATTRIBUTES ATTRIBUTES, --attributes ATTRIBUTES ATTRIBUTES ATTRIBUTES
    Parameter to change the attribute of the OP specified in --op_name.
    If the OP specified in --op_name has no attributes,
    it is ignored. attributes can be specified multiple times.
    --attributes name dtype value dtype is one of
    "float32" or "float64" or "int32" or "int64" or "str".
    https://github.com/onnx/onnx/blob/main/docs/Operators.md

    e.g.
    --attributes alpha float32 [[1.0]]
    --attributes beta float32 [1.0]
    --attributes transA int64 0
    --attributes transB int64 0

  -da DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...], --delete_attributes DELETE_ATTRIBUTES [DELETE_ATTRIBUTES ...]
    Parameter to delete the attribute of the OP specified in --op_name.
    If the OP specified in --op_name has no attributes,
    it is ignored. delete_attributes can be specified multiple times.
    --delete_attributes name1 name2 name3
    https://github.com/onnx/onnx/blob/main/docs/Operators.md

    e.g. --delete_attributes alpha beta

  -ic INPUT_CONSTANTS INPUT_CONSTANTS INPUT_CONSTANTS, --input_constants INPUT_CONSTANTS INPUT_CONSTANTS INPUT_CONSTANTS
    Specifies the name of the constant to be changed.
    If you want to change only the constant,
    you do not need to specify --op_name and --attributes.
    input_constants can be specified multiple times.
    --input_constants constant_name numpy.dtype value

    e.g.
    --input_constants constant_name1 int64 0
    --input_constants constant_name2 float32 [[1.0,2.0,3.0],[4.0,5.0,6.0]]
    --input_constants constant_name3 float32 [\'-Infinity\']

  -n, --non_verbose
    Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from sam4onnx import modify
>>> help(modify)

Help on function modify in module sam4onnx.onnx_attr_const_modify:

modify(
    input_onnx_file_path: Union[str, NoneType] = '',
    output_onnx_file_path: Union[str, NoneType] = '',
    onnx_graph: Union[onnx.onnx_ml_pb2.ModelProto, NoneType] = None,
    op_name: Union[str, NoneType] = '',
    attributes: Union[dict, NoneType] = None,
    delete_attributes: Union[List[str], NoneType] = None,
    input_constants: Union[dict, NoneType] = None,
    non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    input_onnx_file_path: Optional[str]
        Input onnx file path.
        Either input_onnx_file_path or onnx_graph must be specified.

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If output_onnx_file_path is not specified, no .onnx file is output.

    onnx_graph: Optional[onnx.ModelProto]
        onnx.ModelProto.
        Either input_onnx_file_path or onnx_graph must be specified.
        onnx_graph If specified, ignore input_onnx_file_path and process onnx_graph.

    op_name: Optional[str]
        OP name of the attributes to be changed.
        When --attributes is specified, --op_name must always be specified.
        Default: ''
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    attributes: Optional[dict]
        Specify output attributes for the OP to be generated.
        See below for the attributes that can be specified.

        {"attr_name1": numpy.ndarray, "attr_name2": numpy.ndarray, ...}

        e.g. attributes =
            {
                "alpha": np.asarray(1.0, dtype=np.float32),
                "beta": np.asarray(1.0, dtype=np.float32),
                "transA": np.asarray(0, dtype=np.int64),
                "transB": np.asarray(0, dtype=np.int64),
            }
        Default: None
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    delete_attributes: Optional[List[str]]
        Parameter to delete the attribute of the OP specified in --op_name.
        If the OP specified in --op_name has no attributes, it is ignored.
        delete_attributes can be specified multiple times.
        --delete_attributes name1 name2 name3
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

        e.g.
        --delete_attributes alpha beta

    input_constants: Optional[dict]
        Specifies the name of the constant to be changed.
        If you want to change only the constant,
        you do not need to specify --op_name and --attributes.
        {"constant_name1": numpy.ndarray, "constant_name2": numpy.ndarray, ...}

        e.g.
        input_constants =
            {
                "constant_name1": np.asarray(0, dtype=np.int64),
                "constant_name2": np.asarray([[1.0,2.0,3.0],[4.0,5.0,6.0]], dtype=np.float32),
                "constant_name3": np.asarray([-np.inf], dtype=np.float32),
            }
        Default: None
        https://github.com/onnx/onnx/blob/main/docs/Operators.md

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    modified_graph: onnx.ModelProto
        Mddified onnx ModelProto

4. CLI Execution

$ sam4onnx \
--input_onnx_file_path input.onnx \
--output_onnx_file_path output.onnx \
--op_name Transpose_17 \
--attributes perm int64 [0,1]

5. In-script Execution

from sam4onnx import modify

modified_graph = modify(
    onnx_graph=graph,
    op_name="Reshape_17",
    input_constants={"241": np.asarray([1], dtype=np.int64)},
    non_verbose=True,
)

6. Sample

6-1. Transpose - update perm

image

$ sam4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--op_name Transpose_17 \
--attributes perm int64 [0,1]

image

6-2. Mul - update Constant (170) - From: 2, To: 1

image

$ sam4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--op_name Mul_5 \
--input_constants 170 float32 1

image

6-3. Reshape - update Constant (241) - From: [-1], To: [1]

image

$ sam4onnx \
--input_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt.onnx \
--output_onnx_file_path hitnet_sf_finalpass_720x1280_nonopt_mod.onnx \
--op_name Reshape_34 \
--input_constants 241 int64 [1]

image

7. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sam4onnx-1.0.12.tar.gz (11.2 kB view details)

Uploaded Source

Built Distribution

sam4onnx-1.0.12-py3-none-any.whl (10.2 kB view details)

Uploaded Python 3

File details

Details for the file sam4onnx-1.0.12.tar.gz.

File metadata

  • Download URL: sam4onnx-1.0.12.tar.gz
  • Upload date:
  • Size: 11.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for sam4onnx-1.0.12.tar.gz
Algorithm Hash digest
SHA256 1e17667ffc65f3f6c6bb9a216eb97ece9e47a9111107f0d41342fc2d18f80479
MD5 a3d8dbf79b1a24e2c9fb10fab7935105
BLAKE2b-256 aa65d832243fa060cef8359d6f9272be55837690cf477028ad4b14bcb56774fe

See more details on using hashes here.

File details

Details for the file sam4onnx-1.0.12-py3-none-any.whl.

File metadata

  • Download URL: sam4onnx-1.0.12-py3-none-any.whl
  • Upload date:
  • Size: 10.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for sam4onnx-1.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 febd2b10218b933245bf83b372b99e6457c7ef736c14aed866668d9496b78594
MD5 46cea16153081ca1a08861fc94615349
BLAKE2b-256 1f05de88ba8db9357db1e96ce86b6f31f6636c1fd892f0a46870bb0d6fec1c50

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page