SAMScore Similarity Metric
Project description
SAMScore: A Semantic Structural Similarity Metric for Image Translation Evaluation
Yunxiang Li, Meixu Chen, Wenxuan Yang, Kai Wang, Jun Ma, Alan C. Bovik, You Zhang.
Quick start
Run pip install samscore
.
pip install samscore
pip install git+https://github.com/facebookresearch/segment-anything.git
The following Python code is all you need.
import requests
import os
import samscore
def download_image(url, save_path):
response = requests.get(url)
response.raise_for_status() # Raise an exception if the request was unsuccessful
with open(save_path, 'wb') as file:
file.write(response.content)
os.makedirs('imgs', exist_ok=True)
# Example usage
image_url = 'https://i.ibb.co/yFFg5pn/n02381460-20-real.png'
save_location = 'imgs/real.png'
download_image(image_url, save_location)
image_url = 'https://i.ibb.co/GCQ2jQy/n02381460-20-fake.png'
save_location = 'imgs/fake.png'
download_image(image_url, save_location)
## Initializing the model
SAMScore_Evaluation = samscore.SAMScore(model_type = "vit_b" )
samscore_result = SAMScore_Evaluation.evaluation_from_path(source_image_path='imgs/real.png', generated_image_path='imgs/fake.png')
print('SAMScore: %.4f'%samscore_result)
Citation
If you find this repository useful for your research, please use the following.
@inproceedings{li2023samscore,
title={SAMScore: A Semantic Structural Similarity Metric for Image Translation Evaluation},
author={Yunxiang Li, Meixu Chen, Wenxuan Yang, Kai Wang, Jun Ma, Alan C. Bovik, You Zhang},
booktitle={arxiv},
year={2023}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
samscore-1.34.tar.gz
(10.8 kB
view details)
File details
Details for the file samscore-1.34.tar.gz
.
File metadata
- Download URL: samscore-1.34.tar.gz
- Upload date:
- Size: 10.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0159a1cc19c8972f7706ad0bfce0f3a397ba65f0499d13c422d090b1904bbf3e |
|
MD5 | 00d9aac779ecbf1c1e7e159b66b6fc24 |
|
BLAKE2b-256 | afa51acce7de06a4fbbd8f9796656cca68ce004a7fe7e118835d5edc3c301977 |