Skip to main content

SAMScore Similarity Metric

Project description

SAMScore: A Semantic Structural Similarity Metric for Image Translation Evaluation

Yunxiang Li, Meixu Chen, Wenxuan Yang, Kai Wang, Jun Ma, Alan C. Bovik, You Zhang.

Arxiv
Open In Colab

Quick start

Run pip install samscore.

pip install samscore
pip install git+https://github.com/facebookresearch/segment-anything.git

The following Python code is all you need.

import requests
import os
import samscore

def download_image(url, save_path):
    response = requests.get(url)
    response.raise_for_status()  # Raise an exception if the request was unsuccessful

    with open(save_path, 'wb') as file:
        file.write(response.content)
os.makedirs('imgs', exist_ok=True)
# Example usage
image_url = 'https://i.ibb.co/yFFg5pn/n02381460-20-real.png'
save_location = 'imgs/real.png'
download_image(image_url, save_location)

image_url = 'https://i.ibb.co/GCQ2jQy/n02381460-20-fake.png'
save_location = 'imgs/fake.png'
download_image(image_url, save_location)

## Initializing the model
SAMScore_Evaluation = samscore.SAMScore(model_type = "vit_b" )
samscore_result = SAMScore_Evaluation.evaluation_from_path(source_image_path='imgs/real.png',  generated_image_path='imgs/fake.png')

print('SAMScore: %.4f'%samscore_result)

Citation

If you find this repository useful for your research, please use the following.

@inproceedings{li2023samscore,
  title={SAMScore: A Semantic Structural Similarity Metric for Image Translation Evaluation},
  author={Yunxiang Li, Meixu Chen, Wenxuan Yang, Kai Wang, Jun Ma, Alan C. Bovik, You Zhang},
  booktitle={arxiv},
  year={2023}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

samscore-1.34.tar.gz (10.8 kB view details)

Uploaded Source

File details

Details for the file samscore-1.34.tar.gz.

File metadata

  • Download URL: samscore-1.34.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.13

File hashes

Hashes for samscore-1.34.tar.gz
Algorithm Hash digest
SHA256 0159a1cc19c8972f7706ad0bfce0f3a397ba65f0499d13c422d090b1904bbf3e
MD5 00d9aac779ecbf1c1e7e159b66b6fc24
BLAKE2b-256 afa51acce7de06a4fbbd8f9796656cca68ce004a7fe7e118835d5edc3c301977

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page