Skip to main content

Sanitise text while keeping your sanity

Project description

# Saniti

**Sanitise lists of text documents quickly, easily and whilst maintaining your sanity**

The aim was to streamline processing lists of documents into the same outputs into simply specifying the list of texts and defining the sanitization pipeline.

### Usage:

**As a function-ish**

import saniti
original_text = ["I like to moves it, move its", "I likeing to move it!", "the of"]
text = saniti.saniti(original_text, ["token", "destop", "depunct", "unempty", "stem", "out_corp_dict"]) #sanitise the text while initalising the class

{'dictionary': <gensim.corpora.dictionary.Dictionary object at 0x000002BA9F5FFEF0>, 'corpus': [[(0, 1), (1, 1), (2, 2)], [(0, 1), (1, 1), (2, 1)], []]}

**As a class**

import saniti
sani1 = saniti.saniti() # initialise the santising class
text = sani1.process(original_text, ["token", "destop", "depunct", "unempty", "lemma", "out_tag_doc"]) # sanitise the text

[TaggedDocument(words=['I', 'like', 'move', 'move'], tags=['I like move move']), TaggedDocument(words=['I', 'likeing', 'move'], tags=['I likeing move']), TaggedDocument(words=[], tags=[''])]

## Pipeline Components

* "token" - tokenise texts
* "depunct" - remove punctuation
* "unempty" - remove empty words within documents
* "lemma" - lemmatize text
* "destop" - remove stopwords
* "stem" - stem texts
* "out_tag_doc" - turns the texts into gensim tagged documents for Doc2Vec
* "out_corp_dict" - turns the texts into gensim corpus and dictionary

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

saniti-0.1.51.tar.gz (3.1 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page