Package for Santiment API access with python
Project description
sanpy
Santiment API python client.
Table of contents
- sanpy
- Table of contents
- Installation
- Upgrade to latest version
- Install extra packages
- Restricted metrics
- Configuration
- Retrieving data from the API
- Available metrics
- Available Metrics for Slug
- Metric Complexity
- Include Incomplete Data Flag
- Available Since
- Full list of metrics for a single project
- Holder Metrics
- Social Metrics
- Price Metrics
- Development Metrics
- Derivatives
- MakerDAO Metrics
- On-Chain Metrics
- Fetching lists of projects
- Other Price metrics
- Gas Used
- Miners Balance
- Mining Pools Distribution
- Historical Balance
- Price Volume Difference
- Ethereum Top Transactions
- Ethereum Spent Over Time
- Token Top Transactions
- Top Transfers
- Emerging Trends
- Top Social Gainers Losers
- Extras
- Development
- Running tests
- Running integration tests
Installation
pip install sanpy
Upgrade to latest version
pip install --upgrade sanpy
Install extra packages
There are few scripts under extras directory. To install their dependencies use:
pip install sanpy[extras]
Restricted metrics
In order to access real-time data or historical data for some of the metrics, you'll need to set the API key, generated from an account with a paid API plan.
All restricted metrics are free for "santiment" token.
Configuration
Optionally you can provide an api key which gives access to some restricted metrics:
import san
san.ApiConfig.api_key = 'api-key-provided-by-sanbase'
To obtain an api key you should log in to sanbase
and go to the account
page - https://app.santiment.net/account.
There is an API Keys
section and a Generate new api key
button.
If the account used for generating the api key has enough SAN tokens, the api key will give you access to the data that requires SAN token staking. The api key can only be used to fetch data and not to execute graphql mutations.
Retrieving data from the API
The data is fetched by providing a string in the format query/slug
and additional parameters.
query
: Available queries can be found in section: Available metricsslug
: A list of projects with their slugs, names, etc. can be fetched like this:
import san
san.get("projects/all")
name slug ticker totalSupply
0 0chain 0chain ZCN 400000000
1 0x 0x ZRX 1000000000
2 0xBitcoin 0xbtc 0xBTC 20999984
...
Parameters:
from_date
,to_date
- A date or datetime in iso8601 format specifying the start and end datetime for the returned data or the string for ex:2018-06-01
, or a string, representing the relative datetimeutc_now-<interval>
interval
- The interval of the returned data - an integer followed by one of:s
,m
,h
,d
orw
Default values for parameters:
from_date
:datetime.now() - 365 days
to_date
:datetime.now()
interval
:'1d'
The returned value for time-series data is in pandas DataFrame
format indexed by datetime
.
Fetch single metric
import san
san.get(
"daily_active_addresses/santiment",
from_date="2018-06-01",
to_date="2018-06-05",
interval="1d"
)
san.get(
"prices/santiment",
from_date="2018-06-01",
to_date="2018-06-05",
interval="1d"
)
Using the defaults params (last 1 year of data with 1 day interval):
san.get("daily_active_addresses/santiment")
san.get("prices/santiment")
Fetching metadata for a metric
Fetching the metadata for an on-chain metric.
san.metadata(
"nvt",
arr=['availableSlugs', 'defaultAggregation', 'humanReadableName', 'isAccessible', 'isRestricted', 'restrictedFrom', 'restrictedTo']
)
Example result:
{'availableSlugs': ['0chain', '0x', '0xbtc', '0xcert', '1sg', ...],
'defaultAggregation': 'AVG', 'humanReadableName': 'NVT (Using Circulation)', 'isAccessible': True, 'isRestricted': True, 'restrictedFrom': '2020-03-21T08:44:14Z', 'restrictedTo': '2020-06-17T08:44:14Z'}
availableSlugs
- A list of all slugs available for this metric.defaultAggregation
- If big interval are queried, all values that fall into this interval will be aggregated with this aggregation.humanReadableName
- A name of the metric suitable for showing to users.isAccessible
-True
if the metric is accessible. If API key is configured, c hecks the API plan subscriptions.False
if the metric is not accessbile. For examplecirculation_1d
requiresPRO
plan subscription in order to be accessbile at all.isRestricted
-True
if time restrictions apply to the metric and your current plan (Free
if no API key is configured). CheckrestrictedFrom
andrestrictedTo
.restrictedFrom
- The first datetime available of that metric for your current plan.restrictedTo
- The last datetime available of that metric and your current plan.
Batching multiple queries
from san import Batch
batch = Batch()
batch.get(
"daily_active_addresses/santiment",
from_date="2018-06-01",
to_date="2018-06-05",
interval="1d"
)
batch.get(
"transaction_volume/santiment",
from_date="2018-06-01",
to_date="2018-06-05",
interval="1d"
)
[daa, trx_volume] = batch.execute()
Making a custom graphql query to the API
from san.graphql import execute_gql
import pandas as pd
res = execute_gql("""{
projectBySlug(slug: "santiment") {
slug
name
ticker
infrastructure
mainContractAddress
twitterLink
}
}""")
pd.DataFrame(res['projectBySlug'], index=[0])
infrastructure mainContractAddress name slug ticker twitterLink
0 ETH 0x7c5a0ce9267ed19b22f8cae653f198e3e8daf098 Santiment santiment SAN https://twitter.com/santimentfeed
Rate Limit Tools
There are two functions, which can help you in handling the rate limits:
is_rate_limit_exception
- Returns whether the exception caught is because of rate limitationrate_limit_time_left
- Returns the time left before the rate limit expiresapi_calls_made
- Returns the API calls for each day in which it was usedapi_calls_remaining
- Returns the API calls remaining for the month, hour and minute
Example:
import time
import san
try:
san.get(
"price_usd/santiment",
from_date="utc_now-30d",
to_date="utc_now",
interval="1d"
)
except Exception as e:
if san.is_rate_limit_exception(e):
rate_limit_seconds = san.rate_limit_time_left(e)
print(f"Will sleep for {rate_limit_seconds}")
time.sleep(rate_limit_seconds)
...
calls_by_day = san.api_calls_made()
calls_remaining = san.api_calls_remaining()
Available metrics
Getting all of the metrics as a list is done using the following code:
san.available_metrics()
Available Metrics for Slug
Getting all of the metrics for a given slug is achieved with the following code:
san.available_metrics_for_slug('santiment')
Metric Complexity
Fetch the complexity of a metric. The complexity depends on the from/to/interval parameters, as well as the metric and the subscription plan. A request might have a maximum complexity of 20000. If a request has a higher complexity there are a few ways to solve the issue:
- Break down the request into multiple requests with smaller from-to ranges.
- Upgrade to a higher subscription plan.
san.metric_complexity(
metric='price_usd',
from_date='2020-01-01',
to_date='2020-02-20',
interval='1d'
)
Include Incomplete Data Flag
Daily metrics have one value per day. For the current day, the latest computed value will not include a full day of data.
For example, computing daily_active_addresses
at 08:00 includes data for one third of the day. To reduce confusion, the current
day value for metrics that have this behaviour is excluded. To force fetching the current day value, the includeIncompleteData
flag must be used.
san.get(
"daily_active_addresses/bitcoin",
from_date="utc_now-3d",
to_date="utc_now",
interval="1d",
include_incomplete_data=True
)
Available Since
Fetch the first datetime for which a metric is available for a given slug.
san.available_metric_for_slug_since(metric='daily_active_addresses', slug='santiment')
Below are described the available metrics and are given examples for fetching them.
Full list of metrics for a single project
NOTE: When a new metric is added to the API,
san.available_metrics()
will automatically pick it up and it will be accessible with sanpy, but it might take some time to be added to this documentation. The list below might not be full at times.
The suffixes _<number>y
and _<number>d
means that the metric is calculated
only by taken into account the tokens and coins that have moved in the past
number of years or days.
All these metrics are returned as a Pandas dataframe with two columns - datetime
and float value
.
All metrics that do not follow the same format are explicitly listed after that.
Example usage:
san.get(
"price_usd/santiment",
from_date="2020-06-01",
to_date="2021-06-05",
interval="1d",
transform={"type": "moving_average", "moving_average_base": 100},
aggregation="LAST"
)
Where the parameters, that are not mentioned, are optional:
transform
- Apply a transformation on the data. The supported transformations are:
- "moving_average" - Replace every value Vi with the average of the last "moving_average_base" values.
- "consecutive_differences" - Replace every value Vi with the value Vi - Vi-1 where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value.
- "percent_change" - Replace every value Vi with the percent change of Vi-1 and Vi ( (Vi / Vi-1 - 1) * 100) where i is the position in the list. Automatically fetches some extra data needed in order to compute the first value.
aggregation
- the aggregation which is used for the query results.
Holder Metrics
- amount_in_top_holders
- amount_in_exchange_top_holders
- amount_in_non_exchange_top_holders
- holders_distribution_combined_balance_100k_to_1M
- holders_distribution_0.1_to_1
- holders_distribution_0_to_0.001
- holders_distribution_1_to_10
- holders_distribution_1k_to_10k
- holders_distribution_combined_balance_0.01_to_0.1
- holders_distribution_combined_balance_0.1_to_1
- holders_distribution_combined_balance_1k_to_10k
- holders_distribution_100_to_1k
- holders_distribution_combined_balance_10k_to_100k
- holders_distribution_10_to_100
- holders_distribution_10k_to_100k
- holders_distribution_total
- holders_distribution_combined_balance_1M_to_10M
- holders_distribution_combined_balance_10_to_100
- holders_distribution_1M_to_10M
- holders_distribution_0.01_to_0.1
- holders_distribution_0.001_to_0.01
- holders_distribution_combined_balance_1_to_10
- holders_distribution_combined_balance_100_to_1k
- holders_distribution_combined_balance_0_to_0.001
- holders_distribution_combined_balance_0.001_to_0.01
- holders_distribution_combined_balance_10M_to_inf
- holders_distribution_100k_to_1M
- holders_distribution_10M_to_inf
- percent_of_total_supply_on_exchanges
- supply_on_exchanges
- supply_outside_exchanges
Social Metrics
- twitter_followers
- social_dominance_telegram
- social_dominance_reddit
- social_dominance_total
- social_volume_telegram
- social_volume_reddit
- social_volume_twitter
- social_volume_bitcointalk
- social_volume_total
- community_messages_count_telegram
- community_messages_count_total
- sentiment_positive_total
- sentiment_positive_telegram
- sentiment_positive_reddit
- sentiment_positive_twitter
- sentiment_positive_bitcointalk
- sentiment_negative_total
- sentiment_negative_telegram
- sentiment_negative_reddit
- sentiment_negative_twitter
- sentiment_negative_bitcointalk
- sentiment_balance_total
- sentiment_balance_telegram
- sentiment_balance_reddit
- sentiment_balance_twitter
- sentiment_balance_bitcointalk
- sentiment_volume_consumed_total
- sentiment_volume_consumed_telegram
- sentiment_volume_consumed_reddit
- sentiment_volume_consumed_twitter
- sentiment_volume_consumed_bitcointalk
Price Metrics
- price_usd
- price_btc
- price_eth
- volume_usd
- marketcap_usd
- daily_avg_marketcap_usd
- daily_avg_price_usd
- daily_closing_marketcap_usd
- daily_closing_price_usd
- daily_high_price_usd
- daily_low_price_usd
- daily_opening_price_usd
- daily_trading_volume_usd
- volume_usd_change_1d
- volume_usd_change_30d
- volume_usd_change_7d
- price_usd_change_1d
- price_usd_change_30d
- price_usd_change_7d
Development Metrics
- dev_activity
- dev_activity_change_30d
- dev_activity_contributors_count
- github_activity
- github_activity_contributors_count
Derivatives
- bitmex_perpetual_basis
- bitmex_perpetual_funding_rate
- bitmex_perpetual_open_interest
- bitmex_perpetual_open_value
MakerDAO Metrics
- dai_created
- dai_repaid
- mcd_collat_ratio
- mcd_collat_ratio_sai
- mcd_collat_ratio_weth
- mcd_dsr
- mcd_erc20_supply
- mcd_locked_token
- mcd_stability_fee
- mcd_supply
- scd_collat_ratio
- scd_locked_token
On-Chain Metrics
- active_addresses_24h
- active_addresses_24h_change_1d
- active_addresses_24h_change_30d
- active_addresses_24h_change_7d
- active_deposits
- active_withdrawals
- age_destroyed
- circulation
- circulation_10y
- circulation_180d
- circulation_1d
- circulation_2y
- circulation_30d
- circulation_365d
- circulation_3y
- circulation_5y
- circulation_60d
- circulation_7d
- circulation_90d
- daily_active_addresses
- deposit_transactions
- exchange_balance
- exchange_inflow
- exchange_outflow
- mean_age
- mean_dollar_invested_age
- mean_realized_price_usd
- mean_realized_price_usd_10y
- mean_realized_price_usd_180d
- mean_realized_price_usd_1d
- mean_realized_price_usd_2y
- mean_realized_price_usd_30d
- mean_realized_price_usd_365d
- mean_realized_price_usd_3y
- mean_realized_price_usd_5y
- mean_realized_price_usd_60d
- mean_realized_price_usd_7d
- mean_realized_price_usd_90d
- mvrv_long_short_diff_usd
- mvrv_usd
- mvrv_usd_10y
- mvrv_usd_180d
- mvrv_usd_1d
- mvrv_usd_2y
- mvrv_usd_30d
- mvrv_usd_365d
- mvrv_usd_3y
- mvrv_usd_5y
- mvrv_usd_60d
- mvrv_usd_7d
- mvrv_usd_90d
- mvrv_usd_intraday
- mvrv_usd_intraday_10y
- mvrv_usd_intraday_180d
- mvrv_usd_intraday_1d
- mvrv_usd_intraday_2y
- mvrv_usd_intraday_30d
- mvrv_usd_intraday_365d
- mvrv_usd_intraday_3y
- mvrv_usd_intraday_5y
- mvrv_usd_intraday_60d
- mvrv_usd_intraday_7d
- mvrv_usd_intraday_90d
- network_growth
- nvt
- nvt_transaction_volume
- realized_value_usd
- realized_value_usd_10y
- realized_value_usd_180d
- realized_value_usd_1d
- realized_value_usd_2y
- realized_value_usd_30d
- realized_value_usd_365d
- realized_value_usd_3y
- realized_value_usd_5y
- realized_value_usd_60d
- realized_value_usd_7d
- realized_value_usd_90d
- stock_to_flow
- transaction_volume
- velocity
- withdrawal_transactions
Fetching lists of projects
All Projects
Returns a DataFrame with all the projects available in the Santiment API. Not all metrics will be available for each of the projects.
slug
is the unique identifier of a project, used in the metrics fetching.
san.get("projects/all")
Example result:
name slug ticker totalSupply
0 0chain 0chain ZCN 400000000
1 0x 0x ZRX 1000000000
2 0xBitcoin 0xbtc 0xBTC 20999984
3 0xcert Protocol 0xcert ZXC 500000000
4 1World 1world 1WO 37219453
5 AB-Chain RTB ab-chain-rtb RTB 27857813
6 Abulaba abulaba AAA 397000000
7 AC3 ac3 AC3 80235326.0
...
ERC20 Projects
Returns a DataFrame with all the ERC20 projects available in the Santiment API.
Not all metrics will be available for all the projects. The slug
is a unique
identifier which can be used to retrieve most of the metrics.
san.get("projects/erc20")
Example result:
name slug ticker totalSupply
0 0chain 0chain ZCN 400000000
1 0x 0x ZRX 1000000000
2 0xBitcoin 0xbtc 0xBTC 20999984
3 0xcert Protocol 0xcert ZXC 500000000
4 1World 1world 1WO 37219453
5 AB-Chain RTB ab-chain-rtb RTB 27857813
6 Abulaba abulaba AAA 397000000
7 adbank adbank ADB 1000000000
...
Other Price metrics
Open, High, Close, Low Prices, Volume, Marketcap
Note: this query cannot be batched!
san.get(
"ohlcv/santiment",
from_date="2018-06-01",
to_date="2018-06-05",
interval="1d"
)
Example result:
datetime openPriceUsd closePriceUsd highPriceUsd lowPriceUsd volume marketcap
2018-06-01 00:00:00+00:00 1.24380 1.27668 1.26599 1.19099 852857 7.736268e+07
2018-06-02 00:00:00+00:00 1.26136 1.30779 1.27612 1.20958 1242520 7.864724e+07
2018-06-03 00:00:00+00:00 1.28270 1.28357 1.24625 1.21872 1032910 7.844339e+07
2018-06-04 00:00:00+00:00 1.23276 1.24910 1.18528 1.18010 617451 7.604326e+07
Gas Used
Returns used Gas by a blockchain. When you send tokens, interact with a contract or do anything else on the blockchain, you must pay for that computation. That payment is calculated in Gas. Currently only ETH is supported.
san.get(
"gas_used/ethereum",
from_date="2019-06-01",
to_date="2019-06-05",
interval="1d"
)
Example result:
datetime gasUsed
2019-06-01 00:00:00+00:00 47405557702
2019-06-02 00:00:00+00:00 44769162038
2019-06-03 00:00:00+00:00 46415901420
2019-06-04 00:00:00+00:00 46907686393
2019-06-05 00:00:00+00:00 45925073341
Miners Balance
Returns miner balances over time. Currently only ETH is supported.
san.get(
"miners_balance/ethereum",
from_date="2019-06-01",
to_date="2019-06-05",
interval="1d"
)
Example result:
datetime balance
2019-06-01 00:00:00+00:00 1.529488e+06
2019-06-02 00:00:00+00:00 1.533494e+06
2019-06-03 00:00:00+00:00 1.527438e+06
2019-06-04 00:00:00+00:00 1.525666e+06
2019-06-05 00:00:00+00:00 1.527563e+06
Mining Pools Distribution
Returns distribution of miners between mining pools. What part of the miners are using top3, top10 and all the other pools. Currently only ETH is supported.
san.get(
"mining_pools_distribution/ethereum",
from_date="2019-06-01",
to_date="2019-06-05",
interval="1d"
)
Example result:
datetime other top10 top3
2019-06-01 00:00:00+00:00 0.129237 0.249906 0.620857
2019-06-02 00:00:00+00:00 0.127432 0.251903 0.620666
2019-06-03 00:00:00+00:00 0.122058 0.249603 0.628339
2019-06-04 00:00:00+00:00 0.127726 0.254982 0.617293
2019-06-05 00:00:00+00:00 0.120436 0.265842 0.613722
Historical Balance
Historical balance for erc20 token or eth address. Returns the historical balance for a given address in the given interval.
san.get(
"historical_balance/santiment",
address="0x1f3df0b8390bb8e9e322972c5e75583e87608ec2",
from_date="2019-04-18",
to_date="2019-04-23",
interval="1d"
)
Example result:
datetime balance
2019-04-18 00:00:00+00:00 382338.33
2019-04-19 00:00:00+00:00 382338.33
2019-04-20 00:00:00+00:00 382338.33
2019-04-21 00:00:00+00:00 215664.33
2019-04-22 00:00:00+00:00 215664.33
Price Volume Difference
Fetch the price-volume difference technical indicator for a given slug, display currency and time period. This indicator measures the difference in trend between price and volume, specifically when price goes up as volume goes down.
san.get(
"price_volume_difference/santiment",
from_date="2019-04-18",
to_date="2019-04-23",
interval="1d",
currency="USD"
)
Example result:
datetime priceChange priceVolumeDiff volumeChange
2019-04-18 00:00:00+00:00 0.017779 0.013606 -39908.007476
2019-04-19 00:00:00+00:00 0.012587 0.007332 -31195.568878
2019-04-20 00:00:00+00:00 0.009062 0.004169 -24550.100411
2019-04-21 00:00:00+00:00 0.002573 0.001035 -19307.845911
2019-04-22 00:00:00+00:00 0.001527 0.000703 -20317.934666
Ethereum Top Transactions
Top ETH transactions for project's team wallets.
Available transaction types:
- ALL
- IN
- OUT
san.get(
"eth_top_transactions/santiment",
from_date="2019-04-18",
to_date="2019-04-30",
limit=5,
transaction_type="ALL"
)
Example result:
The result is shortened for convenience
datetime fromAddress fromAddressInExchange toAddress toAddressInExchange trxHash trxValue
2019-04-29 21:33:31+00:00 0xe76fe52a251c8f... False 0x45d6275d9496b... False 0x776cd57382456a... 100.00
2019-04-29 21:21:18+00:00 0xe76fe52a251c8f... False 0x468bdccdc334f... False 0x848414fb5c382f... 40.95
2019-04-19 14:14:52+00:00 0x1f3df0b8390bb8... False 0xd69bc0585e05e... False 0x590512e1f1fbcf... 19.48
2019-04-19 14:09:58+00:00 0x1f3df0b8390bb8... False 0x723fb5c14eaff... False 0x78e0720b9e72d1... 15.15
Ethereum Spent Over Time
ETH spent for each interval from the project's team wallet and time period
san.get(
"eth_spent_over_time/santiment",
from_date="2019-04-18",
to_date="2019-04-23",
interval="1d"
)
Example result:
datetime ethSpent
2019-04-18 00:00:00+00:00 0.000000
2019-04-19 00:00:00+00:00 34.630284
2019-04-20 00:00:00+00:00 0.000000
2019-04-21 00:00:00+00:00 0.000158
2019-04-22 00:00:00+00:00 0.000000
Token Top Transactions
Top transactions for the token of a given project
san.get(
"token_top_transactions/santiment",
from_date="2019-04-18",
to_date="2019-04-30",
limit=5
)
Example result:
The result is shortened for convenience
datetime fromAddress fromAddressInExchange toAddress toAddressInExchange trxHash trxValue
2019-04-21 13:51:59+00:00 0x1f3df0b8390bb8... False 0x5eaae5e949952... False 0xdbced935b09dd0... 166674.00000
2019-04-28 07:43:38+00:00 0x0a920bfdf7f977... False 0x868074aab18ea... False 0x5f2214d34bcdc3... 33181.82279
2019-04-28 07:53:32+00:00 0x868074aab18ea3... False 0x876eabf441b2e... True 0x90bd286da38a2b... 33181.82279
2019-04-26 14:38:45+00:00 0x876eabf441b2ee... True 0x76af586d041d6... False 0xe45b86f415e930... 28999.64023
2019-04-30 15:17:28+00:00 0x876eabf441b2ee... True 0x1f4a90043cf2d... False 0xc85892b9ef8c64... 20544.42975
Top Transfers
Top transfers for the token of a given project, address
and transaction_type
arguments can be added as well, in the form of a key-value pair. The transaction_type
parameter can have one of these three values: ALL
, OUT
, IN
.
san.get(
"top_transfers/santiment",
from_date="utc_now-30d",
to_date="utc_now",
)
The result is shortened for convenience
Example result:
fromAddress toAddress trxHash trxValue
datetime
2021-06-17 00:16:26+00:00 0xa48df... 0x876ea... 0x62a56... 136114.069733
2021-06-17 00:10:05+00:00 0xbd3c2... 0x876ea... 0x732a5... 117339.779890
2021-06-19 21:36:03+00:00 0x59646... 0x0d45b... 0x5de31... 112336.882707
...
san.get(
"top_transfers/santiment",
address="0x26e068650ae54b6c1b149e1b926634b07e137b9f",
transaction_type="ALL",
from_date="utc_now-30d",
to_date="utc_now",
)
Example result:
fromAddress toAddress trxHash trxValue
datetime
2021-06-13 09:14:01+00:00 0x26e06... 0xfd3d... 0x4af6... 69854.528
2021-06-13 09:13:01+00:00 0x876ea... 0x26e0... 0x18c1... 69854.528
2021-06-14 08:54:52+00:00 0x876ea... 0x26e0... 0xdceb... 59920.591
...
Emerging Trends
Emerging trends for a given period of time
san.get(
"emerging_trends",
from_date="2019-07-01",
to_date="2019-07-02",
interval="1d",
size=5
)
Example result:
datetime score word
2019-07-01 00:00:00+00:00 375.160034 lnbc
2019-07-01 00:00:00+00:00 355.323281 dent
2019-07-01 00:00:00+00:00 268.653820 link
2019-07-01 00:00:00+00:00 231.721809 shorts
2019-07-01 00:00:00+00:00 206.812798 btt
2019-07-02 00:00:00+00:00 209.343752 bounce
2019-07-02 00:00:00+00:00 135.412811 vidt
2019-07-02 00:00:00+00:00 116.842801 bat
2019-07-02 00:00:00+00:00 98.517600 bottom
2019-07-02 00:00:00+00:00 89.309975 haiku
Top Social Gainers Losers
Top social gainers/losers returns the social volume changes for crypto projects.
san.get(
"top_social_gainers_losers",
from_date="2019-07-18",
to_date="2019-07-30",
size=5,
time_window="2d",
status="ALL"
)
Example result:
The result is shortened for convenience
datetime slug change status
2019-07-28 01:00:00+00:00 libra-credit 21.000000 GAINER
2019-07-28 01:00:00+00:00 aeon -1.000000 LOSER
2019-07-28 01:00:00+00:00 thunder-token 5.000000 NEWCOMER
2019-07-28 02:00:00+00:00 libra-credit 43.000000 GAINER
... ... ... ...
2019-07-30 07:00:00+00:00 storj 12.000000 NEWCOMER
2019-07-30 11:00:00+00:00 storj 21.000000 GAINER
2019-07-30 11:00:00+00:00 aergo -1.000000 LOSER
2019-07-30 11:00:00+00:00 litex 8.000000 NEWCOMER
Extras
Take a look at the examples folder.
Development
It is recommended to use pipenv for managing your local environment.
Setup project:
pipenv install
Install main dependencies:
pipenv run pip install -e .
Install extra dependencies:
pipenv run pip install -e '.[extras]'
Running tests
python setup.py test
Running integration tests
python setup.py nosetests -a integration
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.