Skip to main content

Generative AutoML for Tabular Data

Project description

SapientML

Generative AutoML for Tabular Data

SapientML is an AutoML technology that can learn from a corpus of existing datasets and their human-written pipelines, and efficiently generate a high-quality pipeline for a predictive task on a new dataset.

PyPI - Version Release Conventional Commits OpenSSF Best Practices

NEW: Available on 🤗 HuggingFace Spaces!!

Open in Spaces

Installation

From PyPI repository

pip install sapientml

From source code:

git clone https://github.com/sapientml/sapientml.git
cd sapientml
pip install poetry
poetry install

Getting Started

Please see our Documentation for further details.

Run AutoML

import pandas as pd
from sapientml import SapientML
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split

train_data = pd.read_csv("https://github.com/sapientml/sapientml/files/12481088/titanic.csv")
train_data, test_data = train_test_split(train_data)
y_true = test_data["survived"].reset_index(drop=True)
test_data.drop(["survived"], axis=1, inplace=True)

cls = SapientML(["survived"])

cls.fit(train_data)
y_pred = cls.predict(test_data)

y_pred = y_pred["survived"].rename("survived_pred")
print(f"F1 score: {f1_score(y_true, y_pred)}")

Obtain and Run Generated Code

You can access model field to get a model consisting of generated code after executing fit method. model provides fit, predict, and save method to train a model by generated code, predict from a test data by generated code, and save generated code to a designated folder.

model = sml.fit(train_data, codegen_only=True).model

model.fit(X_train, y_train) # build a model by using another data and the same generated code

y_pred = model.predict(X_test) # prediction by using generated code

model.save("/path/to/output") # save generated code to `path/to/output`

Examples

Dataset Task Target Code
Titanic Dataset classification survived Open In Colab
Hotel Cancellation classification Status Open In Colab
Housing Prices regression SalePrice Open In Colab
Medical Insurance Charges regression charges Open In Colab

Publications

The technologies of the software originates from the following research paper published at the International Conference on Software Engineering (ICSE), which is one of the premier conferences on Software Engineering.

Ripon K. Saha, Akira Ura, Sonal Mahajan, Chenguang Zhu, Linyi Li, Yang Hu, Hiroaki Yoshida, Sarfraz Khurshid, Mukul R. Prasad (2022, May). SapientML: Synthesizing Machine Learning Pipelines by Learning from Human-Written Solutions. In Proceedings of the 44th International Conference on Software Engineering (pp. 1932-1944).

@inproceedings{10.1145/3510003.3510226,
author = {Saha, Ripon K. and Ura, Akira and Mahajan, Sonal and Zhu, Chenguang and Li, Linyi and Hu, Yang and Yoshida, Hiroaki and Khurshid, Sarfraz and Prasad, Mukul R.},
title = {SapientML: Synthesizing Machine Learning Pipelines by Learning from Human-Written Solutions},
year = {2022},
isbn = {9781450392211},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3510003.3510226},
doi = {10.1145/3510003.3510226},
abstract = {Automatic machine learning, or AutoML, holds the promise of truly democratizing the use of machine learning (ML), by substantially automating the work of data scientists. However, the huge combinatorial search space of candidate pipelines means that current AutoML techniques, generate sub-optimal pipelines, or none at all, especially on large, complex datasets. In this work we propose an AutoML technique SapientML, that can learn from a corpus of existing datasets and their human-written pipelines, and efficiently generate a high-quality pipeline for a predictive task on a new dataset. To combat the search space explosion of AutoML, SapientML employs a novel divide-and-conquer strategy realized as a three-stage program synthesis approach, that reasons on successively smaller search spaces. The first stage uses meta-learning to predict a set of plausible ML components to constitute a pipeline. In the second stage, this is then refined into a small pool of viable concrete pipelines using a pipeline dataflow model derived from the corpus. Dynamically evaluating these few pipelines, in the third stage, provides the best solution. We instantiate SapientML as part of a fully automated tool-chain that creates a cleaned, labeled learning corpus by mining Kaggle, learns from it, and uses the learned models to then synthesize pipelines for new predictive tasks. We have created a training corpus of 1,094 pipelines spanning 170 datasets, and evaluated SapientML on a set of 41 benchmark datasets, including 10 new, large, real-world datasets from Kaggle, and against 3 state-of-the-art AutoML tools and 4 baselines. Our evaluation shows that SapientML produces the best or comparable accuracy on 27 of the benchmarks while the second best tool fails to even produce a pipeline on 9 of the instances. This difference is amplified on the 10 most challenging benchmarks, where SapientML wins on 9 instances with the other tools failing to produce pipelines on 4 or more benchmarks.},
booktitle = {Proceedings of the 44th International Conference on Software Engineering},
pages = {1932–1944},
numpages = {13},
keywords = {AutoML, program synthesis, program analysis, machine learning},
location = {Pittsburgh, Pennsylvania},
series = {ICSE '22}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sapientml-0.4.13.tar.gz (24.7 kB view details)

Uploaded Source

Built Distribution

sapientml-0.4.13-py3-none-any.whl (29.3 kB view details)

Uploaded Python 3

File details

Details for the file sapientml-0.4.13.tar.gz.

File metadata

  • Download URL: sapientml-0.4.13.tar.gz
  • Upload date:
  • Size: 24.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.14 Linux/6.5.0-1021-azure

File hashes

Hashes for sapientml-0.4.13.tar.gz
Algorithm Hash digest
SHA256 0879af3141664bb8930f0f5ba5de495615c7b06a9bcca351c848581f2b57789d
MD5 9983525f4a624048d4bdc69342d6d283
BLAKE2b-256 5182f01ac54cd6d4b97c4f08e2650f7dad343af6063bdf276a23d499c1960139

See more details on using hashes here.

File details

Details for the file sapientml-0.4.13-py3-none-any.whl.

File metadata

  • Download URL: sapientml-0.4.13-py3-none-any.whl
  • Upload date:
  • Size: 29.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.10.14 Linux/6.5.0-1021-azure

File hashes

Hashes for sapientml-0.4.13-py3-none-any.whl
Algorithm Hash digest
SHA256 fe05263468f71c332f598739e8c75d9857048463b69f9ab67cd2229858243eba
MD5 6750cf1203f8396b12ce4cf057aaa3e9
BLAKE2b-256 03835bb0ba93eccecca20414752801a46a5229294b4bf192a630b0dbc7a9153a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page