Skip to main content

Sapsan project

Project description

Sapsan Sapsan logo

Sapsan is a pipeline for Machine Learning (ML) based turbulence modeling. While turbulence is important in a wide range of mediums, the pipeline primarily focuses on astrophysical application. With Sapsan, one can create their own custom models or use either conventional or physics-informed ML approaches for turbulence modeling included with the pipeline (estimators). Sapsan is designed to take out all the hard work from data preparation and analysis, leaving you focused on ML model design, layer by layer.

Feel free to check out a website version at sapsan.app. The interface is indentical to the GUI of the local version of Sapsan, except lacking the ability to edit the model code on the fly.

Sapsan's Wiki

Please refer to Sapsan's github wiki to learn more about framework's details and capabilities.

Quick Start

1. Install PyTorch (prerequisite)

Sapsan can be run on both cpu and gpu. Please follow the instructions on PyTorch to install the latest version (torch>=1.7.1 & CUDA>=11.0).

2. Install via pip (recommended)

pip install sapsan

OR Clone from git

git clone https://github.com/pikarpov-LANL/Sapsan.git
cd Sapsan/
python setup.py install

Note: see Installation Page on the Wiki for complete instructions with Graphviz and Docker installation.

3. Test Installation

To make sure everything is alright, run a test of your setup:

sapsan test

4. Run Examples

To get started and familiarize yourself with the interface, feel free to run the included examples (CNN or PICAE on 3D data, and KRR on 2D data). To copy the examples, type:

sapsan get_examples

This will create a folder ./sapsan_examples with appropriate example jupyter notebooks.

5. Create Custom Projects!

To start a custom project, designing your own custom estimator, i.e. network, go ahead and run:

sapsan create {name}

where {name} should be replaced with your custom project name. As a result, a pre-filled template for the estimator, jupyter notebook to run everything from, and Docker will be initialized.


Sapsan has a BSD-style license, as found in the LICENSE file.

© (or copyright) 2019. Triad National Security, LLC. All rights reserved. This program was produced under U.S. Government contract 89233218CNA000001 for Los Alamos National Laboratory (LANL), which is operated by Triad National Security, LLC for the U.S. Department of Energy/National Nuclear Security Administration. All rights in the program are reserved by Triad National Security, LLC, and the U.S. Department of Energy/National Nuclear Security Administration. The Government is granted for itself and others acting on its behalf a nonexclusive, paid-up, irrevocable worldwide license in this material to reproduce, prepare derivative works, distribute copies to the public, perform publicly and display publicly, and to permit others to do so.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sapsan-0.3.0.tar.gz (53.6 kB view details)

Uploaded Source

Built Distribution

sapsan-0.3.0-py3-none-any.whl (71.5 kB view details)

Uploaded Python 3

File details

Details for the file sapsan-0.3.0.tar.gz.

File metadata

  • Download URL: sapsan-0.3.0.tar.gz
  • Upload date:
  • Size: 53.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sapsan-0.3.0.tar.gz
Algorithm Hash digest
SHA256 323d15da4ef0a4a519923e02978b2e4ad7c8b2e51ace39e8c1ddfd5f05b39aa8
MD5 701945c6c41bed75fdba8f127556322a
BLAKE2b-256 d3bc1dafea3d3dc5e268174d6075f59124ef562e09d14ee5a7eb5c979cbb3769

See more details on using hashes here.

Provenance

File details

Details for the file sapsan-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: sapsan-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 71.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.3 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.0 CPython/3.9.6

File hashes

Hashes for sapsan-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9b3411e59a0701a8bd45c5358ff8c227315a3bd130034f76255ae4844dcb0238
MD5 2ca6dd9d9603b92f590dcac219c603c9
BLAKE2b-256 5c8f3ea8c715191fdea2d839392381f24bb704e8519018b3617720c5fc6941de

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page