Skip to main content

Tool for measuring 3/4 PCFs on discrete periodic data.

Project description

A useful python package to measure the 3/4 PCFs of discrete periodic data in $\mathcal{O}(N_g \log N_g)$ time. This is done using Fast Fourier Transforms.

Basic Usage:

import sarabande

NPCF_obj = sarabande.measure(**kwargs)
sarabande.calc_zeta(NPCF_obj)
zeta = NPCF_obj.zeta

Where **kwargs can be any of the arguments to the measure constructor function. The possible arguments are:

Args:

  • nPCF ([int]): Must be either 3 or 4. Determines how many points we use in our nPCF.

  • projected ([bool]): Flag to determine whether the user wants a projected 3/4 PCF or the Full. Defaults to False.

    • if projected:
      • m_max ([int]): If user chooses projected, we set an m_max (similar to the ell_max in 3D)
    • if not projected:
      • ell_max ([int]): If user choosees not projected (full nPCF) then ell_max is the highest order for calculation.
  • density_field_data ([ndarray]): A square ndarray of data that is periodic. Must be 2D for projected and 3D for full.

  • save_dir ([string]): A string to tell the algorithm where to save and store files. All temporary files will be stored here.

  • save_name ([string]): A string to tell the algorithm what to name the files.

  • nbins ([int]): Number of bins to be used in nPCF calculation.

  • bin_spacing ([string]): A string to determine the spacing of bins. Options are 'LIN', 'INV', or 'LOG'

  • bin_min ([int]): The lower bound of the inner most bin. Default is 1. Optional.

  • physical_boxsize ([float]): An optional parameter if using a physical scale. The length of one side of the data.

  • rmin ([float]): minimum calculation distance (determins bin_min)

  • rmax ([float]): maximum calculation distance (determins bin_max)

Workflow:

The map of SARABANDE is as follows:

For more information about each algorithm, please read (Sunseri et al. 2022)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sarabande-0.0.1.tar.gz (12.1 kB view details)

Uploaded Source

Built Distribution

sarabande-0.0.1-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file sarabande-0.0.1.tar.gz.

File metadata

  • Download URL: sarabande-0.0.1.tar.gz
  • Upload date:
  • Size: 12.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.3

File hashes

Hashes for sarabande-0.0.1.tar.gz
Algorithm Hash digest
SHA256 e1b3f582bcdda028c523846b9a544b830be531aba8a4e85c79115eb001bdd80f
MD5 b6faa566ca3b9fbfb004711a868e6bd1
BLAKE2b-256 3cdda79a06a1f6d40ed028c36f42ab3bd967743a7d17780571298368deb80c98

See more details on using hashes here.

Provenance

File details

Details for the file sarabande-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: sarabande-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 17.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.3

File hashes

Hashes for sarabande-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9469a66a35276610e9336859e5e8d0a0d1bf63a38f3dd721437af173d6486962
MD5 9758e751936f82035bfb86da6b9d785d
BLAKE2b-256 a942cceb13871981d55689fccf1b9ea717ffb75a506eccfa9338ea4fde244879

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page