Skip to main content

Tool for measuring 3/4 PCFs on discrete periodic data.

Project description

A useful python package to measure the 3/4 PCFs of discrete periodic data in $\mathcal{O}(N_g \log N_g)$ time. This is done using Fast Fourier Transforms.

Basic Usage:

import sarabande

NPCF_obj = sarabande.measure(**kwargs)
sarabande.calc_zeta(NPCF_obj)
zeta = NPCF_obj.zeta

Where **kwargs can be any of the arguments to the measure constructor function. The possible arguments are:

Args:

  • nPCF ([int]): Must be either 3 or 4. Determines how many points we use in our nPCF.

  • projected ([bool]): Flag to determine whether the user wants a projected 3/4 PCF or the Full. Defaults to False.

    • if projected:
      • m_max ([int]): If user chooses projected, we set an m_max (similar to the ell_max in 3D)
    • if not projected:
      • ell_max ([int]): If user choosees not projected (full nPCF) then ell_max is the highest order for calculation.
  • density_field_data ([ndarray]): A square ndarray of data that is periodic. Must be 2D for projected and 3D for full.

  • save_dir ([string]): A string to tell the algorithm where to save and store files. All temporary files will be stored here.

  • save_name ([string]): A string to tell the algorithm what to name the files.

  • nbins ([int]): Number of bins to be used in nPCF calculation.

  • bin_spacing ([string]): A string to determine the spacing of bins. Options are 'LIN', 'INV', or 'LOG'

  • bin_min ([int]): The lower bound of the inner most bin. Default is 1. Optional.

  • physical_boxsize ([float]): An optional parameter if using a physical scale. The length of one side of the data.

  • rmin ([float]): minimum calculation distance (determins bin_min)

  • rmax ([float]): maximum calculation distance (determins bin_max)

Workflow:

The map of SARABANDE is as follows:

For more information about each algorithm, please read (Sunseri et al. 2022)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sarabande-0.0.10.tar.gz (37.5 kB view details)

Uploaded Source

Built Distribution

sarabande-0.0.10-py3-none-any.whl (41.9 kB view details)

Uploaded Python 3

File details

Details for the file sarabande-0.0.10.tar.gz.

File metadata

  • Download URL: sarabande-0.0.10.tar.gz
  • Upload date:
  • Size: 37.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9

File hashes

Hashes for sarabande-0.0.10.tar.gz
Algorithm Hash digest
SHA256 b773143026257bc45f020ea9ac23352b7f1aaf44bad550bf383e3cb65cbce56d
MD5 d7dad5c0581aa13cd0d2ab4b6cbb825f
BLAKE2b-256 07737bf0abf45c526ded425d55f2c611a7d766dfb21821731cc6a029638a4c50

See more details on using hashes here.

Provenance

File details

Details for the file sarabande-0.0.10-py3-none-any.whl.

File metadata

  • Download URL: sarabande-0.0.10-py3-none-any.whl
  • Upload date:
  • Size: 41.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9

File hashes

Hashes for sarabande-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 f783319268d537b318b22716b2a87acfb4a52d20e6c07edc8ffbfbda4943be04
MD5 6f24175d979b65bf0d3476a7d7870ec9
BLAKE2b-256 0595ac22a00d528f2243d074256c070da2f46e97a58ff35311b9308364556176

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page