Skip to main content

Tool for measuring 3/4 PCFs on discrete periodic data.

Project description

A useful python package to measure the 3/4 PCFs of discrete periodic data in $\mathcal{O}(N_g \log N_g)$ time. This is done using Fast Fourier Transforms.

Basic Usage:

import sarabande

NPCF_obj = sarabande.measure(**kwargs)
sarabande.calc_zeta(NPCF_obj)
zeta = NPCF_obj.zeta

Where **kwargs can be any of the arguments to the measure constructor function. The possible arguments are:

Args:

  • nPCF ([int]): Must be either 3 or 4. Determines how many points we use in our nPCF.

  • projected ([bool]): Flag to determine whether the user wants a projected 3/4 PCF or the Full. Defaults to False.

    • if projected:
      • m_max ([int]): If user chooses projected, we set an m_max (similar to the ell_max in 3D)
    • if not projected:
      • ell_max ([int]): If user choosees not projected (full nPCF) then ell_max is the highest order for calculation.
  • density_field_data ([ndarray]): A square ndarray of data that is periodic. Must be 2D for projected and 3D for full.

  • save_dir ([string]): A string to tell the algorithm where to save and store files. All temporary files will be stored here.

  • save_name ([string]): A string to tell the algorithm what to name the files.

  • nbins ([int]): Number of bins to be used in nPCF calculation.

  • bin_spacing ([string]): A string to determine the spacing of bins. Options are 'LIN', 'INV', or 'LOG'

  • bin_min ([int]): The lower bound of the inner most bin. Default is 1. Optional.

  • physical_boxsize ([float]): An optional parameter if using a physical scale. The length of one side of the data.

  • rmin ([float]): minimum calculation distance (determins bin_min)

  • rmax ([float]): maximum calculation distance (determins bin_max)

Workflow:

The map of SARABANDE is as follows:

For more information about each algorithm, please read (Sunseri et al. 2022)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sarabande-0.0.2.tar.gz (12.1 kB view details)

Uploaded Source

Built Distribution

sarabande-0.0.2-py3-none-any.whl (16.9 kB view details)

Uploaded Python 3

File details

Details for the file sarabande-0.0.2.tar.gz.

File metadata

  • Download URL: sarabande-0.0.2.tar.gz
  • Upload date:
  • Size: 12.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9

File hashes

Hashes for sarabande-0.0.2.tar.gz
Algorithm Hash digest
SHA256 71d581b46615d0b78f350f663173a3ec07804a656b6eae4753c00c2ba8d0355a
MD5 72f518d25ac48666ccddb190320df5f8
BLAKE2b-256 4c524c063e2cd528489d27e4a621f8c6308d3a341d82e0e142cf4a78c3d71353

See more details on using hashes here.

Provenance

File details

Details for the file sarabande-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: sarabande-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 16.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9

File hashes

Hashes for sarabande-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 29d8ec1e1dcd6ddc9c2f2c543a7d001cd4f73f7573df6ecfa66f158147cf56ea
MD5 d72ddf94209298f8cffa91216f3e88f7
BLAKE2b-256 cb2dc6ba6ce8414f330bcdd97630d3249787533acb833b2975bf4b5c06b68ea5

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page