Skip to main content

Tool for measuring 3/4 PCFs on discrete periodic data.

Project description

A useful python package to measure the 3/4 PCFs of discrete periodic data in $\mathcal{O}(N_g \log N_g)$ time. This is done using Fast Fourier Transforms.

Basic Usage:

import sarabande

NPCF_obj = sarabande.measure(**kwargs)
sarabande.calc_zeta(NPCF_obj)
zeta = NPCF_obj.zeta

Where **kwargs can be any of the arguments to the measure constructor function. The possible arguments are:

Args:

  • nPCF ([int]): Must be either 3 or 4. Determines how many points we use in our nPCF.

  • projected ([bool]): Flag to determine whether the user wants a projected 3/4 PCF or the Full. Defaults to False.

    • if projected:
      • m_max ([int]): If user chooses projected, we set an m_max (similar to the ell_max in 3D)
    • if not projected:
      • ell_max ([int]): If user choosees not projected (full nPCF) then ell_max is the highest order for calculation.
  • density_field_data ([ndarray]): A square ndarray of data that is periodic. Must be 2D for projected and 3D for full.

  • save_dir ([string]): A string to tell the algorithm where to save and store files. All temporary files will be stored here.

  • save_name ([string]): A string to tell the algorithm what to name the files.

  • nbins ([int]): Number of bins to be used in nPCF calculation.

  • bin_spacing ([string]): A string to determine the spacing of bins. Options are 'LIN', 'INV', or 'LOG'

  • bin_min ([int]): The lower bound of the inner most bin. Default is 1. Optional.

  • physical_boxsize ([float]): An optional parameter if using a physical scale. The length of one side of the data.

  • rmin ([float]): minimum calculation distance (determins bin_min)

  • rmax ([float]): maximum calculation distance (determins bin_max)

Workflow:

The map of SARABANDE is as follows:

For more information about each algorithm, please read (Sunseri et al. 2022)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sarabande-0.0.9.tar.gz (37.5 kB view details)

Uploaded Source

Built Distribution

sarabande-0.0.9-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file sarabande-0.0.9.tar.gz.

File metadata

  • Download URL: sarabande-0.0.9.tar.gz
  • Upload date:
  • Size: 37.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9

File hashes

Hashes for sarabande-0.0.9.tar.gz
Algorithm Hash digest
SHA256 2a5e4587f851d2c5897677121a964a512a2db18db80dcde12774875b6f37cc48
MD5 6f6ced5a2bb867166c9ef09413f34311
BLAKE2b-256 144a90676ac693cae8505f2c45ddeb897d84f4feeb6283b83a4d8354fb095e98

See more details on using hashes here.

Provenance

File details

Details for the file sarabande-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: sarabande-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 21.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9

File hashes

Hashes for sarabande-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 23b7e5b00a4cc56fa78ba8e85a6a31bb25361338fe1e503a572b5a0bebaf1af9
MD5 8bfe4ed2808c3bac1cf8572a46e58295
BLAKE2b-256 bba0c402dd9154cb3ec010f6cc7bf633230182185ced72a20923cd687696cbf8

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page