Skip to main content

Tool for measuring 3/4 PCFs on discrete periodic data.

Project description

codecov PyPI

A useful python package to measure the 3/4 PCFs of discrete periodic data in NlogN time. This is done using Fast Fourier Transforms.

Basic Usage:

import sarabande

NPCF_obj = sarabande.measure(**kwargs)
sarabande.calc_zeta(NPCF_obj)
zeta = NPCF_obj.zeta

Where **kwargs can be any of the arguments to the measure constructor function. The possible arguments are:

Args:

  • nPCF ([int]): Must be either 3 or 4. Determines how many points we use in our nPCF.

  • projected ([bool]): Flag to determine whether the user wants a projected 3/4 PCF or the Full. Defaults to False.

    • if projected:
      • m_max ([int]): If user chooses projected, we set an m_max (similar to the ell_max in 3D)
    • if not projected:
      • ell_max ([int]): If user choosees not projected (full nPCF) then ell_max is the highest order for calculation.
  • density_field_data ([ndarray]): A square ndarray of data that is periodic. Must be 2D for projected and 3D for full.

  • save_dir ([string]): A string to tell the algorithm where to save and store files. All temporary files will be stored here.

  • save_name ([string]): A string to tell the algorithm what to name the files.

  • nbins ([int]): Number of bins to be used in nPCF calculation.

  • bin_spacing ([string]): A string to determine the spacing of bins. Options are 'LIN', 'INV', or 'LOG'

  • bin_min ([int]): The lower bound of the inner most bin. Default is 1. Optional.

  • physical_boxsize ([float]): An optional parameter if using a physical scale. The length of one side of the data.

  • rmin ([float]): minimum calculation distance (determins bin_min)

  • rmax ([float]): maximum calculation distance (determins bin_max)

Workflow:

The map of SARABANDE is as follows:

For more information about each algorithm, please read (Sunseri et al. 2022)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sarabande-0.1.0.tar.gz (37.8 kB view details)

Uploaded Source

Built Distribution

sarabande-0.1.0-py3-none-any.whl (41.9 kB view details)

Uploaded Python 3

File details

Details for the file sarabande-0.1.0.tar.gz.

File metadata

  • Download URL: sarabande-0.1.0.tar.gz
  • Upload date:
  • Size: 37.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9

File hashes

Hashes for sarabande-0.1.0.tar.gz
Algorithm Hash digest
SHA256 4da640f275ea76b2c81f98496551a374df14cb0f3dd225ff11ba481380e70fd3
MD5 dfe095915b3e5bfeaa0132c9899efcf6
BLAKE2b-256 c6f99288878144ff1d69362232fe820842fefe9fa06676a0e0acef5cd77f8984

See more details on using hashes here.

Provenance

File details

Details for the file sarabande-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: sarabande-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 41.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/33.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.9

File hashes

Hashes for sarabande-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f4a44f9a4a1cb988f46f50a1e060ddcc92c7fc14abbb9baeb929ee2d21101e10
MD5 3b7e7c6da2d9172eef5fbf7674df2388
BLAKE2b-256 885df8e087018567ab45359f09de24a4be81808949605172db41918bbb1a4eb6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page