Sas Data Loader application
Project description
Sasdata
A package for importing and exporting reduced small angle scattering data.
The data loaders provided are usable as a standalone package, or in conjunction with the sasview analysis package.
Install
The easiest way to use sasdata is by using SasView.
View the latest release on the sasdata pypi page and install using pip install sasdata
.
To run sasdata from the source, create a python environment using python 3.8 or higher and install all dependencies
-
Using a python virtual environment::
$ python -m venv sasdata $ .\sasdata\Scripts\activate (Windows) -or- source sasdata/bin/activate (Mac/Linux) (sasdata) $ python -m pip install -r requirements.txt (sasdata) $ python /path/to/sasdata/setup.py clean build (sasdata) $ python -m pip install .
-
$ conda create -n sasdata $ conda activate sasdata (sasdata) $ python -m pip install -r requirements.txt (sasdata) $ python /path/to/sasdata/setup.py clean build (sasdata) $ python -m pip install .
Data Formats
The Loader()
class is directly callable so a transient call can be made to the class or, for cases where repeated calls
are necessary, the Loader()
instance can be assigned to a python variable.
The Loader.load()
method accepts a string or list of strings to load a single or multiple data sets simultaneously. The
strings passed to load()
can be any combination of file path representations, or URIs. A list of Data1D/Data2D
objects is returned. An optional format
parameter can be passed to specify the expected file extension associated with
a reader. If format is passed, it must either be a single value, or a list of values of the same length as the file path list.
- Load
format
options include:.xml
: canSAS XML format.h5
,.hdf
,.hdf5
,.nxs
: NXcanSAS format.txt
: Multi-column ascii format.csv
: Comma delimited text format.ses
,.sesans
: Multi-column SESANS data.dat
: 2D NIST format.abs
,.cor
: 1D NIST format for SAS and USAS.pdh
: Anton Paar reduced SAXS format
The save()
method accepts 3 arguments; the file path to save the file as, a Data1D
or Data2D
object, and, optionally,
a file extension. If an extension is passed to save
, any file extension in the file path will be superseded. If no file
extension is given in the filename or format, a ValueError will be thrown.
- Save
format
options include:.xml
: for the canSAS XML format.h5
: for the NXcanSAS format.txt
: for the multi-column ascii format.csv
: for a comma delimited text format
Save argument examples and data output:
filename | format | saved file name | saved file format |
---|---|---|---|
'mydata' | '.csv' | mydata.csv | CSV format |
'mydata.xml' | None | mydata.xml | canSAS XML format |
'mydata.xml' | '.csv' | mydata.xml.csv | CSV format |
'mydata' | None | - | raise ValueError |
More information on the recognized data formats is available on the sasview website.
Example Data
A number of data files are included with this package available in sasdata.example_data
.
- Each subdirectory has a specific type of data.
1d_data
: 1-dimensional SAS data. A few examples areapoferritin.txt
which is SANS from apoferritin, 3 files starting withAOT_
that are contrast variations for a mircroemulsion, andlatex_smeared.xml
with SANS and USANS data for spherical latex particles.2d_data
: 2-dimensional SAS data. Examples include 3P123_....dat
files for a polymer concentration series.convertibles_files
: A series of data sets that can be converted via the data conversion tool in thesasdata.file_converter
package.dls_data
: NOTE Not loadable by sasdata. Two example DLS data sets that will be loadable in a future release.image_data
: Image file loadable fromsasdata.dataloader.readers.tiff_reader
. The files are all the same image, but in different image formats.sesans_data
: SESANS data sets.sphere_isis.ses
is spin-echo SANS from a sample with spherical particles.
- To directly access this data via a python prompt,
import data_path from sasdata
returns the absolute path tosasdata.example_data
Usage
Accessing example data
(sasdata) $ python
>>> from sasdata import data_path
>>> data = Loader().load(os.path.join(data_path, '1d_data', 'apoferritin.txt'))
Loading and saving data sets using a fixed Loader instance:
(sasdata) $ python
>>> from sasdata.dataloader.loader import Loader
>>> loader_module = Loader()
>>> loaded_data_sets = loader_module.load(path="/path/to/file.ext")
>>> loaded_data_set = loaded_data_sets[0]
>>> loader_module.save(path='/path/to/new/file.ext', data=loaded_data_set, format=None)
Loading and saving data sets using a transient Loader instance (more scriptable):
(sasdata) $ python
>>> from sasdata.dataloader.loader import Loader
>>> loaded_data_sets = Loader().load(path="/path/to/file.ext")
>>> Loader().save(path='/path/to/new/file.ext', data=loaded_data_sets[0], format=None)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file sasdata-0.9.0.tar.gz
.
File metadata
- Download URL: sasdata-0.9.0.tar.gz
- Upload date:
- Size: 25.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0a03953d3d82e0d4f0fe570b4d653df382f4ca431a723e3b3c898a8275f399ca |
|
MD5 | 50281689b6438e24d6955d1564777242 |
|
BLAKE2b-256 | 0140013b07f430ce3eab5b110a102e0861500a19f3485dee7ecb53099b29d481 |
File details
Details for the file sasdata-0.9.0-py3-none-any.whl
.
File metadata
- Download URL: sasdata-0.9.0-py3-none-any.whl
- Upload date:
- Size: 19.8 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b13892fca2fef5283a6a03fbcb1e791cad8ed485ab979fd9119d2922ce0876c2 |
|
MD5 | 80c5cca0326bcf33b0b08892546d5632 |
|
BLAKE2b-256 | 7bb6b50276ae6311a280398eed89758d6a9c83c8e1599b55d35664c1666585b9 |