Skip to main content

Methods for spatial alignment of satellite imagery

Project description

A Python package for efficient multi-temporal image co-registration 🚀

PyPI License Black isort


GitHub: https://github.com/IPL-UV/satalign 🌐

PyPI: https://pypi.org/project/satalign/ 🛠️


Overview 📊

Satalign is a Python package designed for efficient multi-temporal image co-registration. It enables aligning temporal data cubes with reference images using advanced techniques such as Phase Cross-Correlation (PCC), Enhanced Cross-Correlation (ECC), and Local Geometric Matching (LGM). This package facilitates the manipulation and processing of large volumes of Earth observation data efficiently.

Key features

  • Advanced alignment algorithms: Leverages ECC, PCC, and LGM to accurately align multi-temporal images. 🔍
  • Efficient data cube management: Processes large data cubes with memory and processing optimizations. 🧩
  • Support for local feature models: Utilizes models like SuperPoint, SIFT, and more for keypoint matching. 🖥️
  • Parallelization: Executes alignment processes across multiple cores for faster processing. 🚀

Installation ⚙️

Install the latest version from PyPI:

pip install satalign

To use the PCC module, you need to install additional dependencies:

pip install satalign[pcc]

Alternatively, if you already have satalign installed:

pip install scikit-image

To use the LGM module, you need to install additional dependencies:

pip install satalign[deep]

How to use 🛠️

Align an ee.ImageCollection with satalign.pcc.PCC 🌍

Load libraries

import ee
import fastcubo
import satalign
import satalign.pcc
import matplotlib.pyplot as plt
from IPython.display import Image, display

Auth and Init GEE

# Initialize depending on the environment
ee.Authenticate()
ee.Initialize(opt_url="https://earthengine-highvolume.googleapis.com") # project = "name"

Dataset

# Download image collection
table = fastcubo.query_getPixels_imagecollection(
    point=(-75.71260, -14.18835),
    collection="COPERNICUS/S2_HARMONIZED",
    bands=["B2", "B3", "B4", "B8"],
    data_range=["2023-12-01", "2023-12-31"],
    edge_size=256,
    resolution=10,
)
fastcubo.getPixels(table, nworkers=4, output_path="output")

Align dataset

# Create a data cube and select images if desired
s2_datacube = satalign.utils.create_array("output", "datacube.pickle")

# Define reference image
reference_image = s2_datacube.sel(time=s2_datacube.time > "2022-08-03").mean("time")

# Initialize and run PCC model
pcc_model = satalign.pcc.PCC(
    datacube=s2_datacube,
    reference=reference_image,
    channel="mean",
    crop_center=128,
    num_threads=2,
)
# Run the alignment
aligned_cube, warp_matrices = pcc_model.run_multicore()

# Display the warped cube
warp_df = satalign.utils.warp2df(warp_matrices, s2_datacube.time.values)
satalign.utils.plot_s2_scatter(warp_df)
plt.show()

Graphics

# Display profiles
satalign.utils.plot_profile(
    warped_cube=aligned_cube.values,
    raw_cube=s2_datacube.values,
    x_axis=3,
    rgb_band=[3, 2, 1],
    intensity_factor=1/3000,
)
plt.show()

# Create PNGs and GIF
# Note: The following part requires a Linux environment
# !apt-get install imagemagick
gifspath = satalign.utils.plot_animation1(
    warped_cube=aligned_cube[0:50].values,
    raw_cube=s2_datacube[0:50].values,
    dates=s2_datacube.time[0:50].values,
    rgb_band=[3, 2, 1],
    intensity_factor=1/3000,
    png_output_folder="./output_png",
    gif_delay=20,
    gif_output_file="./animation1.gif",
)
display(Image(filename='animation1.gif'))

Here's an addition to clarify that datacube and reference_image have already been defined:

Align an Image Collection with satalign.eec.ECC 📚

import satalign.ecc

# Initialize the ECC model
ecc_model = satalign.ecc.ECC(
    datacube=s2_datacube, 
    reference=reference_image,
    gauss_kernel_size=5,
)
# Run the alignment
aligned_cube, warp_matrices = ecc_model.run()

Align using Local Features with satalign.lgm.LGM 🧮

Here's the updated version with a note about using floating-point values or scaling:

import satalign.lgm

# Initialize the LGM model
lgm_model = satalign.lgm.LGM(
    datacube=datacube / 10_000, 
    reference=reference_image / 10_000, 
    feature_model="superpoint",
    matcher_model="lightglue",
)
# Run the alignment
aligned_cube, warp_matrices = lgm_model.run()

In this document, we presented three different examples of how to use SatAlign with PCC, ECC, and LGM for multi-temporal image co-registration. Each example shows how to download an image collection from Google Earth Engine, create a data cube, and align the images using one of the three methods provided by the SatAlign package.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

satalign-0.1.8.tar.gz (39.8 kB view details)

Uploaded Source

Built Distribution

satalign-0.1.8-py3-none-any.whl (43.5 kB view details)

Uploaded Python 3

File details

Details for the file satalign-0.1.8.tar.gz.

File metadata

  • Download URL: satalign-0.1.8.tar.gz
  • Upload date:
  • Size: 39.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for satalign-0.1.8.tar.gz
Algorithm Hash digest
SHA256 d722e88b9cc7c6dfada42c48d99c2028b90b36589b37b7408e4cf2f28b6b9a54
MD5 2f46b9547dc44681af4370f213271b7e
BLAKE2b-256 c48cb2d4619df373902e90d4497a01ab249ee41a9dc742d6d4a3224ea6a01d8f

See more details on using hashes here.

File details

Details for the file satalign-0.1.8-py3-none-any.whl.

File metadata

  • Download URL: satalign-0.1.8-py3-none-any.whl
  • Upload date:
  • Size: 43.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.5

File hashes

Hashes for satalign-0.1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 1742d90d58da1940fb10f4145d53d8aa0c6e458e32990b4e06f5ca7adbc9a0fb
MD5 d116a1c0c53b41129032acbda6bc8cfa
BLAKE2b-256 93c64905ca1c33ce5049b5b40263ae0f74635217730e2ffd4ea1d5bea5f96d8b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page