Skip to main content

Blazingly fast data validation for Python, powered by Rust

Project description

Satya Logo

Satya (सत्य)

PyPI version License: Apache 2.0 Python Versions

SATYA - High Performance Data Validation for Python

Satya (सत्य) is the Sanskrit word for truth and reality, embodying our commitment to data integrity and validation. Just as truth is fundamental and unwavering, Satya ensures your data validation is reliable, fast, and efficient. 🚀

Satya is a blazingly fast data validation library for Python, powered by Rust. Early benchmarks show it performing up to 134x faster than Pydantic for large-scale validation tasks.

Key Features:

  • Lightning fast validation (134x faster than Pydantic in initial benchmarks)
  • Stream processing support for handling large datasets
  • Rust-powered core with a Pythonic API
  • Support for nested models and complex types
  • Compatible with standard Python type hints
  • Minimal memory overhead

Quick Start:

from satya import Model, Field

class User(Model):
    id: int = Field(description="User ID")
    name: str = Field(description="User name")
    email: str = Field(description="Email address")
    active: bool = Field(default=True)

Example 2:

from typing import Optional
from satya import Model, Field, List

# Enable pretty printing for this module
Model.PRETTY_REPR = True

class User(Model):
    id: int
    name: str = Field(default='John Doe')
    email: str = Field(email=True)  # RFC 5322 compliant email validation
    signup_ts: Optional[str] = Field(required=False)  # Using str for datetime
    friends: List[int] = Field(default=[])

external_data = {
    'id': '123',
    'email': 'john.doe@example.com',
    'signup_ts': '2017-06-01 12:22',
    'friends': [1, '2', b'3']
}
validator = User.validator()
result = validator.validate(external_data)
user = User(**result.value)
print(user)
#> User(id=123, name='John Doe', email='john.doe@example.com', signup_ts='2017-06-01 12:22', friends=[1, 2, 3])

🚀 Performance

Our benchmarks show significant performance improvements over existing solutions:

Satya Benchmark Results

📊 Large Dataset Processing (5M records)

  • Satya: 207,321 items/second
  • Pydantic: 72,302 items/second
  • Speed improvement: 2.9x
  • Memory usage: Nearly identical (Satya: 158.2MB, Pydantic: 162.5MB)

🌐 Web Service Benchmark (10,000 requests)

  • Satya: 177,790 requests/second
  • Pydantic: 1,323 requests/second
  • Average latency improvement: 134.4x
  • P99 latency improvement: 134.4x

Note: All benchmarks were run on identical hardware using standardized test cases. Your results may vary depending on your specific use case and data structure complexity.

🎯 Key Features

  • 🏃‍♂️ Lightning Fast: Up to 134x faster than Pydantic
  • 🌊 Stream Processing: Efficient handling of large datasets
  • 🦀 Rust-Powered: High-performance core with zero-cost abstractions
  • 🐍 Pythonic API: Familiar interface for Python developers
  • 🎯 Type Support: Full compatibility with Python type hints
  • 📧 RFC Compliant: Email validation following RFC 5322 standards
  • 📦 Minimal Overhead: Efficient memory usage

Why Satya?

While Pydantic has revolutionized data validation in Python and inspired this project, there are use cases where raw performance is critical. Satya (सत्य) brings the power of truth to your data validation by:

  • Leveraging Rust's zero-cost abstractions for core validation logic
  • Implementing efficient batch processing with minimal overhead
  • Minimizing Python object creation through smart memory management
  • Reducing memory allocations with Rust's ownership model
  • Providing truthful, precise error messages that pinpoint validation issues

Ideal Use Cases:

  • High-throughput API services
  • Real-time data processing
  • Large dataset validation
  • Stream processing applications
  • Performance-critical microservices

Installation:

pip install satya

Requirements:

  • Python 3.8 or higher

Note for developers: If you're contributing to Satya or building from source, you'll need Rust toolchain 1.70.0 or higher:

# Install Rust if you don't have it
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

# Update existing Rust installation
rustup update

You can check your Rust version with:

rustc --version

Current Status:

Satya is currently in alpha (v0.2.1). While the core functionality is stable, we're actively working on:

  • Expanding type support
  • Adding more validation features
  • Improving error messages
  • Enhancing documentation
  • Additional performance optimizations

Acknowledgments:

Special thanks to the Pydantic project, which has set the standard for Python data validation and heavily influenced Satya's API design. While we've focused on raw performance, Pydantic's elegant API and comprehensive feature set remain a major inspiration.

💝 Open Source Spirit

Note to Data Validation Library Authors: Feel free to incorporate our performance optimizations into your libraries! We believe in making the Python ecosystem faster for everyone. All we ask is for appropriate attribution to Satya under our MIT license. Together, we can make data validation blazingly fast for all Python developers!

🤝 Contributing

We welcome contributions of all kinds! Whether you're fixing bugs, improving documentation, or sharing new performance optimizations, here's how you can help:

  • 🐛 Report issues and bugs
  • 💡 Suggest new features or optimizations
  • 📝 Improve documentation
  • 🔧 Submit pull requests
  • 📊 Share benchmarks and use cases

Check out our CONTRIBUTING.md for guidelines.

License:

Apache 2.0

Note: Performance numbers are from initial benchmarks and may vary based on use case and data structure complexity.

Contact:

Remember: Satya is designed for scenarios where validation performance is critical. For general use cases, especially where features and ecosystem compatibility are more important than raw speed, Pydantic remains an excellent choice.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

satya-0.2.14-cp313-cp313-win_amd64.whl (754.8 kB view details)

Uploaded CPython 3.13 Windows x86-64

satya-0.2.14-cp313-cp313-manylinux_2_28_aarch64.whl (991.2 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ ARM64

satya-0.2.14-cp313-cp313-macosx_11_0_arm64.whl (871.8 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

satya-0.2.14-cp313-cp313-macosx_10_12_x86_64.whl (922.4 kB view details)

Uploaded CPython 3.13 macOS 10.12+ x86-64

satya-0.2.14-cp312-cp312-win_amd64.whl (757.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

satya-0.2.14-cp312-cp312-manylinux_2_28_aarch64.whl (991.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

satya-0.2.14-cp312-cp312-macosx_11_0_arm64.whl (871.8 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

satya-0.2.14-cp312-cp312-macosx_10_12_x86_64.whl (922.4 kB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

satya-0.2.14-cp311-cp311-win_amd64.whl (757.9 kB view details)

Uploaded CPython 3.11 Windows x86-64

satya-0.2.14-cp311-cp311-manylinux_2_28_aarch64.whl (991.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

satya-0.2.14-cp311-cp311-macosx_11_0_arm64.whl (871.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

satya-0.2.14-cp311-cp311-macosx_10_12_x86_64.whl (922.6 kB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

satya-0.2.14-cp310-cp310-win_amd64.whl (755.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

satya-0.2.14-cp310-cp310-manylinux_2_28_aarch64.whl (991.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

satya-0.2.14-cp310-cp310-macosx_11_0_arm64.whl (871.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

satya-0.2.14-cp310-cp310-macosx_10_12_x86_64.whl (922.6 kB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

satya-0.2.14-cp39-cp39-win_amd64.whl (755.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

satya-0.2.14-cp39-cp39-manylinux_2_28_aarch64.whl (991.7 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

satya-0.2.14-cp39-cp39-macosx_11_0_arm64.whl (872.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

satya-0.2.14-cp39-cp39-macosx_10_12_x86_64.whl (922.8 kB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

satya-0.2.14-cp38-cp38-win_amd64.whl (755.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

satya-0.2.14-cp38-cp38-manylinux_2_28_aarch64.whl (991.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

satya-0.2.14-cp38-cp38-macosx_11_0_arm64.whl (872.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

satya-0.2.14-cp38-cp38-macosx_10_12_x86_64.whl (923.2 kB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

satya-0.2.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

File details

Details for the file satya-0.2.14-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: satya-0.2.14-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 754.8 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for satya-0.2.14-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 5614f8c509b88146e93d15561acbdc570a60641c41077436927ef639eb509e83
MD5 19383e61807d2e27c46e3f8ad0de2c30
BLAKE2b-256 9324739a9f3287e2a3f91ddaf0c4eb91dfcfbb6dc153f3c67f8f0109bbd8073c

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 dd668a49e5a0cb43a4089485d8daf9d035a22ff8992c2053fdcd7fade9197d57
MD5 5fb63ccf9eb2f46fc116445699f91578
BLAKE2b-256 874c309b0e2f7ac250b215c8befc020ead1ac5d7969c8e29995028f99379ba25

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8129123201eeda280847fbd24a9ffe0051ec3638a1b02c5ed8a15ef16d004539
MD5 8f42ce557375f1c6dab01ea4d6bd536f
BLAKE2b-256 3258cfa0271e314e9631f89af937bb07773dd44f8b3d8b05138210cb62c0ff05

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp313-cp313-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp313-cp313-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 7fb75d2b4fcf872a2beee3d9c74ff49a2c108a751a895071bdf72ec05d796557
MD5 8ed26c921886299a73a0dfb284b6a48b
BLAKE2b-256 201169eccec98e45b3164f386f960f1ecd00abc9b63d32517baf0b8a8ab0f934

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: satya-0.2.14-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 757.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for satya-0.2.14-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a16a41cbf3d4ad2dc0e8a57c61a871feff8fb58bc2646584ba7a2bace21dca19
MD5 d8c4f43085cbea8b6fbdb3ae071d2364
BLAKE2b-256 8c395be6beeae72b05d3c4658f9d602e842095f3bfe4b8ba957e6fbc9d051707

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ca073fd42c8fe4f0e66fadd1e32286839930af05188d47ab854f644958f53678
MD5 8a7071de7a041609862066e3f1dd83d9
BLAKE2b-256 6229bbce395aab1d8abcc9986eba82ca72dc6cc25f3eb9f7479be7186b147cd7

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d6dbd4699dcbfdd193ecd404b73eaf1e9ccdc6c87c10a4dae9e20c7193254af2
MD5 fc14b2a475cd4616b2e7964e00ba7875
BLAKE2b-256 61281ad825a5acfe005dcc114730a732478647796e5a130de78e398f861e5984

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2b5b1dd0cf196fe34d1f8f76f2dc567dfd5ff000e3cc2d523bb4df2617c9b51b
MD5 10dbc14009d493451330574d3ae25f0c
BLAKE2b-256 c8ff092763f1813c1cbde440a515734d6054ebd71eb0005fb3206108fb357b28

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: satya-0.2.14-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 757.9 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for satya-0.2.14-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 7f48972a261bf53fc64fdac78a794e501b06a077d79c2bee362755b221ce25ab
MD5 371e959f4530a70a94b1e16727a55b15
BLAKE2b-256 eec0de91e64bf3f592216dc6dfce9efa3a4493b00c7a8292af8cc342eec264c3

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 080d2b14341a6e0ae69f783589941dba69e28445057ada12ea94b71419faafc0
MD5 5fcbdacaad1eba7faded767c443fceb5
BLAKE2b-256 f06bb89391fa2d329708b3a0e781dd1b65ea969c8a468f2cf713b1073cb635e4

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7f20eb59a0e3b92f4ed585976684f2a3430a572e165b13c40d4c4ec9a0f9f376
MD5 8ee02692c69991eceba1b331b6bbd6ae
BLAKE2b-256 8a50af5208cbf8257b9782dc71a302eadb5315e715fce6c0eda13b78c4c22d2c

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 9d30dcd965191eef89428b71ff60c83810f86768e5604bcfb9249f58458978ea
MD5 33bdb566d8663efb757a218001d6287f
BLAKE2b-256 6298ec9d4017c44cf188efca2e8181f65a6dcbae218bba1f06dc2d84aa4de74b

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: satya-0.2.14-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 755.3 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for satya-0.2.14-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5f1dd3bf58fb82f4a350b0508c5793c47ba65473108bba419aff21a8f71025a2
MD5 2e686ea6051d2ab0a61e6ecb636e328c
BLAKE2b-256 e255242c7f42d998df4e42421fdfe774e8328b1b918b5594a2a67aa58bd15b4e

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 32454b799757f74a01838c28d176ff27a58d318a670093e8d04ea901b85a83c1
MD5 1457cf5e59e6d081001e3431ddfa6798
BLAKE2b-256 0163486cd5b3ef9439b7e39863782016b8e39e7b33a64526d17bd5b05564fee5

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 62602cd9a6db58ce91e3691a1e16da4464afaecd80d726e0726b45dec31bff9b
MD5 3f0e347a29a31e03c67b29ff0c983644
BLAKE2b-256 77524ad7f077edb33817ff3323dc4c91fcd19084e92c64fa1c82ac2087f38578

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 0ac9b6b66a4d3d0ef53ca0285d5343736b24a3957227805936c9abc79cbd2a32
MD5 697103c5e05ad13468bd6ef2d4b760d1
BLAKE2b-256 4210b6668eae3e12f053411c7dc1cf0fe6b49bd5644488a9e981a2fe44c6dcca

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: satya-0.2.14-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 755.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for satya-0.2.14-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c781078e60bccb5f21155b2a7eb3c8238f12ec7f8236c57c75235f6385647e4f
MD5 19f4fa867d1ba2a05bb17918062fe371
BLAKE2b-256 0d1287f66c9e7d1aa8eaf8d87a70db10f3f0a5b4f173aa6ea146178eb9dab08a

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 d22029e6c1bd5d7fe2f38a83a7b7beda5ce0d049cbe7957c2bfff931b70cdc99
MD5 6d8f9b3920fe7728ab4a9163e88f51f6
BLAKE2b-256 82d39dd17bcdb387faadef6b09caed904c0e9d2fcfa5c8a01e8d6771a1fbf04b

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 307128240d50dc0aad120e7cbbbed800f1b7ec73f1b9c6235af44aece68abb05
MD5 c226ec19debbf33815348a604627c375
BLAKE2b-256 e2e97912b2c2e46750935289f6dc4d68d540cf281fdcfe1991b51c126f162545

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 c4e38402f1b91b9160ae6116beeaf79b527e41b05a0182b4843634c76d0f7c64
MD5 02e4dec7576cd175e98bda9992c4f83a
BLAKE2b-256 b97ee98b4c5721e3beb400b0d2b9b31703d6dd37cb6070e3d58f117842ecf796

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: satya-0.2.14-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 755.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for satya-0.2.14-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d4332b313b1047865673055f88a1693512cd021755a7882651ed7386b5670012
MD5 44723a8df22f12f1451902f80468cf1d
BLAKE2b-256 29e0cc08871bc5ff6f872612589f9e76308a3526e84fc08e12f09864d6247541

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6ad5ff5f834d3eafc4b12f988484df6f401ed497eb45fb75a4a3557693b2dd62
MD5 3b38517f2eaa17eb4c0a6123d3737a9d
BLAKE2b-256 d03b83118f8ab7cfccba4c98788bc120dbe30b61db7460881d620c4decd0d703

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f19f90a33915b7e4246090a8b5107931093078172a4cc61763db9c9e09f5459e
MD5 e1a7c4dc84e26701e8ba6cefdd993494
BLAKE2b-256 8307575c067f25f385a9404480cb615b394446512aee3cbddfed7db26d890934

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1c73e88a34a270166305b1e95e1d4d3eb3c1c93821b829b5341c500c147a7cb5
MD5 f9d7011284b84dbda82ec253d2bbc733
BLAKE2b-256 cfbe1d488cc2d7b419b961b072e9ec735387043e04fdde778966f33e15018a24

See more details on using hashes here.

File details

Details for the file satya-0.2.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for satya-0.2.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 87423ce234eed1d503b78fe03eb5872d03c10078d78218936a9ca435d6a4051f
MD5 26f39bda7de55c6fdd5bd7ac9d7c30ca
BLAKE2b-256 1ddcfcc0d29b47be06836f54816bc697c1dcd0f6dd004db874503d0770e871f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page