Skip to main content

Autograd and XLA for S-parameters

Project description

SAX

S + Autograd + XLA

SAX LOGO

Autograd and XLA for S-parameters - a scatter parameter circuit simulator and optimizer for the frequency domain based on JAX.

The simulator was developed for simulating Photonic Integrated Circuits but in fact is able to perform any S-parameter based circuit simulation. The goal of SAX is to be a thin wrapper around JAX with some basic tools for S-parameter based circuit simulation and optimization. Therefore, SAX does not define any special datastructures and tries to stay as close as possible to the functional nature of JAX. This makes it very easy to get started with SAX as you only need functions and standard python dictionaries. Let's dive in...

Quick Start

Full Quick Start page - Documentation.

Let's first import the SAX library, along with JAX and the JAX-version of numpy:

import sax
import jax
import jax.numpy as jnp

Define a model function for your component. A SAX model is just a function that returns an 'S-dictionary'. For example a directional coupler:

def coupler(coupling=0.5):
    kappa = coupling**0.5
    tau = (1-coupling)**0.5
    sdict = sax.reciprocal({
        ("in0", "out0"): tau,
        ("in0", "out1"): 1j*kappa,
        ("in1", "out0"): 1j*kappa,
        ("in1", "out1"): tau,
    })
    return sdict

coupler(coupling=0.3)
{('in0', 'out0'): 0.8366600265340756,
 ('in0', 'out1'): 0.5477225575051661j,
 ('in1', 'out0'): 0.5477225575051661j,
 ('in1', 'out1'): 0.8366600265340756,
 ('out0', 'in0'): 0.8366600265340756,
 ('out1', 'in0'): 0.5477225575051661j,
 ('out0', 'in1'): 0.5477225575051661j,
 ('out1', 'in1'): 0.8366600265340756}

Or a waveguide:

def waveguide(wl=1.55, wl0=1.55, neff=2.34, ng=3.4, length=10.0, loss=0.0):
    dwl = wl - wl0
    dneff_dwl = (ng - neff) / wl0
    neff = neff - dwl * dneff_dwl
    phase = 2 * jnp.pi * neff * length / wl
    amplitude = jnp.asarray(10 ** (-loss * length / 20), dtype=complex)
    transmission =  amplitude * jnp.exp(1j * phase)
    sdict = sax.reciprocal({("in0", "out0"): transmission})
    return sdict

waveguide(length=100.0)
{('in0', 'out0'): 0.97953-0.2013j, ('out0', 'in0'): 0.97953-0.2013j}

These component models can then be combined into a circuit:

mzi, _ = sax.circuit(
    netlist={
        "instances": {
            "lft": coupler,
            "top": waveguide,
            "rgt": coupler,
        },
        "connections": {
            "lft,out0": "rgt,in0",
            "lft,out1": "top,in0",
            "top,out0": "rgt,in1",
        },
        "ports": {
            "in0": "lft,in0",
            "in1": "lft,in1",
            "out0": "rgt,out0",
            "out1": "rgt,out1",
        },
    }
)

type(mzi)
function

As you can see, the mzi we just created is just another component model function! To simulate it, call the mzi function with the (possibly nested) settings of its subcomponents. Global settings can be added to the 'root' of the circuit call and will be distributed over all subcomponents which have a parameter with the same name (e.g. 'wl'):

wl = jnp.linspace(1.53, 1.57, 1000)
result = mzi(wl=wl, lft={'coupling': 0.3}, top={'length': 200.0}, rgt={'coupling': 0.8})

plt.plot(1e3*wl, jnp.abs(result['in0', 'out0'])**2, label="in0->out0")
plt.plot(1e3*wl, jnp.abs(result['in0', 'out1'])**2, label="in0->out1", ls="--")
plt.xlabel("λ [nm]")
plt.ylabel("T")
plt.grid(True)
plt.figlegend(ncol=2, loc="upper center")
plt.show()

output

Those are the basics. For more info, check out the full SAX Quick Start page or the rest of the Documentation.

Installation

You can install SAX with pip:

pip install sax

If you want to be able to run all the example notebooks, you'll need python>=3.10 and you should install the development version of SAX:

pip install 'sax[dev]'

License

Copyright © 2023, Floris Laporte, Apache-2.0 License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sax-0.13.4.tar.gz (35.7 kB view details)

Uploaded Source

Built Distribution

sax-0.13.4-py3-none-any.whl (37.0 kB view details)

Uploaded Python 3

File details

Details for the file sax-0.13.4.tar.gz.

File metadata

  • Download URL: sax-0.13.4.tar.gz
  • Upload date:
  • Size: 35.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for sax-0.13.4.tar.gz
Algorithm Hash digest
SHA256 a02fda458963983c7d4c5cd266af07504cb8bf1ada5279d4db666a7c30fdaefe
MD5 1d8a6fd6927d5de5643f24fe1e3f67d8
BLAKE2b-256 7b740dd94230b743c3500395b9468680b54c5bf6197fc272f0ba2e9e31213c1c

See more details on using hashes here.

File details

Details for the file sax-0.13.4-py3-none-any.whl.

File metadata

  • Download URL: sax-0.13.4-py3-none-any.whl
  • Upload date:
  • Size: 37.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for sax-0.13.4-py3-none-any.whl
Algorithm Hash digest
SHA256 1b672bd9a902b0a4a0e26b6fdcdb0a7dae06d225b9eacabdf99a2a0904b00ad3
MD5 7cff797c5af2347a157f419e61d944d7
BLAKE2b-256 8ee65f36bd29e589f82330db3d234acc11f9d379b49a612b06d919d7b84e781f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page