Skip to main content

Autograd and XLA for S-parameters

Project description

SAX

S + Autograd + XLA

SAX LOGO

Autograd and XLA for S-parameters - a scatter parameter circuit simulator and optimizer for the frequency domain based on JAX.

The simulator was developed for simulating Photonic Integrated Circuits but in fact is able to perform any S-parameter based circuit simulation. The goal of SAX is to be a thin wrapper around JAX with some basic tools for S-parameter based circuit simulation and optimization. Therefore, SAX does not define any special datastructures and tries to stay as close as possible to the functional nature of JAX. This makes it very easy to get started with SAX as you only need functions and standard python dictionaries. Let's dive in...

Quick Start

Full Quick Start page - Documentation.

Let's first import the SAX library, along with JAX and the JAX-version of numpy:

import sax
import jax
import jax.numpy as jnp

Define a model function for your component. A SAX model is just a function that returns an 'S-dictionary'. For example a directional coupler:

def coupler(coupling=0.5):
    kappa = coupling**0.5
    tau = (1-coupling)**0.5
    sdict = sax.reciprocal({
        ("in0", "out0"): tau,
        ("in0", "out1"): 1j*kappa,
        ("in1", "out0"): 1j*kappa,
        ("in1", "out1"): tau,
    })
    return sdict

coupler(coupling=0.3)
{('in0', 'out0'): 0.8366600265340756,
 ('in0', 'out1'): 0.5477225575051661j,
 ('in1', 'out0'): 0.5477225575051661j,
 ('in1', 'out1'): 0.8366600265340756,
 ('out0', 'in0'): 0.8366600265340756,
 ('out1', 'in0'): 0.5477225575051661j,
 ('out0', 'in1'): 0.5477225575051661j,
 ('out1', 'in1'): 0.8366600265340756}

Or a waveguide:

def waveguide(wl=1.55, wl0=1.55, neff=2.34, ng=3.4, length=10.0, loss=0.0):
    dwl = wl - wl0
    dneff_dwl = (ng - neff) / wl0
    neff = neff - dwl * dneff_dwl
    phase = 2 * jnp.pi * neff * length / wl
    amplitude = jnp.asarray(10 ** (-loss * length / 20), dtype=complex)
    transmission =  amplitude * jnp.exp(1j * phase)
    sdict = sax.reciprocal({("in0", "out0"): transmission})
    return sdict

waveguide(length=100.0)
{('in0', 'out0'): 0.97953-0.2013j, ('out0', 'in0'): 0.97953-0.2013j}

These component models can then be combined into a circuit:

mzi, _ = sax.circuit(
    netlist={
        "instances": {
            "lft": coupler,
            "top": waveguide,
            "rgt": coupler,
        },
        "connections": {
            "lft,out0": "rgt,in0",
            "lft,out1": "top,in0",
            "top,out0": "rgt,in1",
        },
        "ports": {
            "in0": "lft,in0",
            "in1": "lft,in1",
            "out0": "rgt,out0",
            "out1": "rgt,out1",
        },
    }
)

type(mzi)
function

As you can see, the mzi we just created is just another component model function! To simulate it, call the mzi function with the (possibly nested) settings of its subcomponents. Global settings can be added to the 'root' of the circuit call and will be distributed over all subcomponents which have a parameter with the same name (e.g. 'wl'):

wl = jnp.linspace(1.53, 1.57, 1000)
result = mzi(wl=wl, lft={'coupling': 0.3}, top={'length': 200.0}, rgt={'coupling': 0.8})

plt.plot(1e3*wl, jnp.abs(result['in0', 'out0'])**2, label="in0->out0")
plt.plot(1e3*wl, jnp.abs(result['in0', 'out1'])**2, label="in0->out1", ls="--")
plt.xlabel("λ [nm]")
plt.ylabel("T")
plt.grid(True)
plt.figlegend(ncol=2, loc="upper center")
plt.show()

output

Those are the basics. For more info, check out the full SAX Quick Start page or the rest of the Documentation.

Installation

You can install SAX with pip:

pip install sax

If you want to be able to run all the example notebooks, you'll need python>=3.10 and you should install the development version of SAX:

pip install 'sax[dev]'

License

Copyright © 2023, Floris Laporte, Apache-2.0 License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sax-0.13.5.tar.gz (35.8 kB view details)

Uploaded Source

Built Distribution

sax-0.13.5-py3-none-any.whl (37.0 kB view details)

Uploaded Python 3

File details

Details for the file sax-0.13.5.tar.gz.

File metadata

  • Download URL: sax-0.13.5.tar.gz
  • Upload date:
  • Size: 35.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for sax-0.13.5.tar.gz
Algorithm Hash digest
SHA256 b40eadcc328898b79c6ec99d04136f72be0b6c63e91f06048730bffbdf12c6ae
MD5 88b3fa38f5b651b380a7fab9575d5a64
BLAKE2b-256 090a0cfd0e15be6345c72e5aa7ff393ced0627f6dd1e624d15bb8855c866715b

See more details on using hashes here.

File details

Details for the file sax-0.13.5-py3-none-any.whl.

File metadata

  • Download URL: sax-0.13.5-py3-none-any.whl
  • Upload date:
  • Size: 37.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for sax-0.13.5-py3-none-any.whl
Algorithm Hash digest
SHA256 3e038a09ed3038a8cb9fb7760002695f5d8e5062452ac4067f7b65ca14cbab6b
MD5 39f20f54c9f30c8a7c9622fe5d789353
BLAKE2b-256 f03890062f27caa76081c703efb8754de121dd70fe574c45fa547ef239e5cece

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page