Pixelwise binarization with selectional auto-encoders in Keras
Project description
Binarization
Binarization for document images
Examples
Introduction
This tool performs document image binarization using trained models. The method is based on Calvo-Zaragoza and Gallego, 2018.
Installation
Clone the repository, enter it and run
pip install .
Models
Pre-trained models can be downloaded from here:
https://qurator-data.de/sbb_binarization/
Usage
sbb_binarize \
--patches \
-m <path to directory containing model files> \
<input image> \
<output image>
Note In virtually all cases, applying the --patches
flag will improve the quality of results.
Example
sbb_binarize --patches -m /path/to/models/ myimage.tif myimage-bin.tif
To use the OCR-D interface:
ocrd-sbb-binarize --overwrite -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model "/var/lib/sbb_binarization"
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sbb_binarization-0.0.9.tar.gz
(10.8 kB
view details)
Built Distribution
File details
Details for the file sbb_binarization-0.0.9.tar.gz
.
File metadata
- Download URL: sbb_binarization-0.0.9.tar.gz
- Upload date:
- Size: 10.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4ae867ec45d62f92dd991fd68a0051fc5f0577b46ed96a70c7ab2b6adb02d304 |
|
MD5 | 6d236ca2de62e2d357ba4b97940a6c2d |
|
BLAKE2b-256 | 79f326d31b35a17b82487a2d283bcf86d711cfcbdf9bfd97369e25390079e8c7 |
File details
Details for the file sbb_binarization-0.0.9-py3-none-any.whl
.
File metadata
- Download URL: sbb_binarization-0.0.9-py3-none-any.whl
- Upload date:
- Size: 12.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 769a718e587e15459faf3720bac1d52c1e1436c80aebcca19ec4ce18fc19e811 |
|
MD5 | 909327996eec40c4050461acb68b3b5a |
|
BLAKE2b-256 | e1aebe3ac7a41145bb52cd18e7cf25ce5e5241250b570292229fc487562854bd |