Skip to main content

Pixelwise binarization with selectional auto-encoders in Keras

Project description

Binarization

Binarization for document images

Examples

Introduction

This tool performs document image binarization using trained models. The method is based on Calvo-Zaragoza and Gallego, 2018.

Installation

Clone the repository, enter it and run

pip install .

Models

Pre-trained models can be downloaded from here:

https://qurator-data.de/sbb_binarization/

Usage

sbb_binarize \
  --patches \
  -m <path to directory containing model files> \
  <input image> \
  <output image>

Note In virtually all cases, applying the --patches flag will improve the quality of results.

Example

sbb_binarize --patches -m /path/to/models/ myimage.tif myimage-bin.tif

To use the OCR-D interface:

ocrd-sbb-binarize --overwrite -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model "/var/lib/sbb_binarization"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sbb_binarization-0.0.9.tar.gz (10.8 kB view details)

Uploaded Source

Built Distribution

sbb_binarization-0.0.9-py3-none-any.whl (12.6 kB view details)

Uploaded Python 3

File details

Details for the file sbb_binarization-0.0.9.tar.gz.

File metadata

  • Download URL: sbb_binarization-0.0.9.tar.gz
  • Upload date:
  • Size: 10.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for sbb_binarization-0.0.9.tar.gz
Algorithm Hash digest
SHA256 4ae867ec45d62f92dd991fd68a0051fc5f0577b46ed96a70c7ab2b6adb02d304
MD5 6d236ca2de62e2d357ba4b97940a6c2d
BLAKE2b-256 79f326d31b35a17b82487a2d283bcf86d711cfcbdf9bfd97369e25390079e8c7

See more details on using hashes here.

File details

Details for the file sbb_binarization-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: sbb_binarization-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.7.12

File hashes

Hashes for sbb_binarization-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 769a718e587e15459faf3720bac1d52c1e1436c80aebcca19ec4ce18fc19e811
MD5 909327996eec40c4050461acb68b3b5a
BLAKE2b-256 e1aebe3ac7a41145bb52cd18e7cf25ce5e5241250b570292229fc487562854bd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page