Skip to main content

Score-based Diffusion models in JAX.

Project description

sbgm

Score-Based Diffusion Models in JAX

Implementation and extension of

and

in jax and equinox.

[!WARNING] :building_construction: Note this repository is under construction, expect changes. :building_construction:

Score-based diffusion models

Diffusion models are deep hierarchical models for data that use neural networks to model the reverse of a diffusion process that adds a sequence of noise perturbations to the data.

Modern cutting-edge diffusion models (see citations) express both the forward and reverse diffusion processes as a Stochastic Differential Equation (SDE).


A diagram (see citations) showing how to map data to a noise distribution (the prior) with an SDE, and reverse this SDE for generative modeling. One can also reverse the associated probability flow ODE, which yields a deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE and probability flow ODE can be obtained by estimating the score.


For any SDE of the form

$$ \text{d}\boldsymbol{x} = f(\boldsymbol{x}, t)\text{d}t + g(t)\text{d}\boldsymbol{w}, $$

the reverse of the SDE from noise to data is given by

$$ \text{d}\boldsymbol{x} = [f(\boldsymbol{x}, t) - g(t)^2\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x})]\text{d}t + g(t)\text{d}\boldsymbol{w}. $$

For every SDE there exists an associated ordinary differential equation (ODE)

$$ \text{d}\boldsymbol{x} = [f(\boldsymbol{x}, t)\text{d}t - \frac{1}{2}g(t)^2\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x})]\text{d}t, $$

where the trajectories of the SDE and ODE have the same marginal PDFs $p_t(\boldsymbol{x})$.

The Stein score of the marginal probability distributions over $t$ is approximated with a neural network $\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x})\approx s_{\theta}(\boldsymbol{x}(t), t)$. The parameters of the neural network are fit by minimising the score-matching loss.

Computing log-likelihoods with diffusion models

For each SDE there exists a deterministic ODE with marginal likelihoods $p_t(\boldsymbol{x})$ that match the SDE for all time $t$

$$ \text{d}\boldsymbol{x} = [f(\boldsymbol{x}, t)\text{d}t - \frac{1}{2}g(t)^2\nabla_{\boldsymbol{x}}\log p_t(\boldsymbol{x})]\text{d}t = F(\boldsymbol{x}(t), t). $$

The continuous normalizing flow formalism allows the ODE to be expressed as

$$ \frac{\partial}{\partial t} \log p(\boldsymbol{x}(t)) = -\text{Tr}\bigg [ \frac{\partial}{\partial \boldsymbol{x}(t)} F(\boldsymbol{x}(t), t) \bigg ], $$

but note that maximum-likelihood training is prohibitively expensive for SDE based diffusion models.

Usage

Install via

pip install sbgm

to run

python main.py

See examples.

To run cifar10, try something like

import sbgm
import data
import configs

datasets_path = "."
root_dir = "."

config = configs.cifar10_config()

key = jr.key(config.seed)
data_key, model_key, train_key = jr.split(key, 3)

dataset = data.cifar10(datasets_path, data_key)

sharding = sbgm.shard.get_sharding()
    
# Diffusion model 
model = sbgm.models.get_model(
    model_key, 
    config.model.model_type, 
    dataset.data_shape, 
    dataset.context_shape, 
    dataset.parameter_dim,
    config
)

# Stochastic differential equation (SDE)
sde = sbgm.sde.get_sde(config.sde)

# Fit model to dataset
model = sbgm.train.train(
    train_key,
    model,
    sde,
    dataset,
    config,
    reload_opt_state=False,
    sharding=sharding,
    save_dir=root_dir
)

Features

  • Parallelised exact and approximate log-likelihood calculations,
  • UNet and transformer score network implementations,
  • VP, SubVP and VE SDEs (neural network $\beta(t)$ and $\sigma(t)$ functions are on the list!),
  • Multi-modal conditioning (basically just optional parameter and image conditioning methods),
  • Checkpointing optimiser and model,
  • Multi-device training and sampling.

Samples

[!NOTE] I haven't optimised any training/architecture hyperparameters or trained long enough here, you could do a lot better.

Flowers

Euler-Marayama sampling Flowers Euler-Marayama sampling

ODE sampling Flowers ODE sampling

CIFAR10

Euler-Marayama sampling CIFAR10 Euler-marayama sampling

ODE sampling CIFAR10 ODE sampling

SDEs

alt text

Citations

@misc{song2021scorebasedgenerativemodelingstochastic,
      title={Score-Based Generative Modeling through Stochastic Differential Equations}, 
      author={Yang Song and Jascha Sohl-Dickstein and Diederik P. Kingma and Abhishek Kumar and Stefano Ermon and Ben Poole},
      year={2021},
      eprint={2011.13456},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2011.13456}, 
}
@misc{song2021maximumlikelihoodtrainingscorebased,
      title={Maximum Likelihood Training of Score-Based Diffusion Models}, 
      author={Yang Song and Conor Durkan and Iain Murray and Stefano Ermon},
      year={2021},
      eprint={2101.09258},
      archivePrefix={arXiv},
      primaryClass={stat.ML},
      url={https://arxiv.org/abs/2101.09258}, 
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sbgm-0.0.17.tar.gz (23.5 kB view details)

Uploaded Source

Built Distribution

sbgm-0.0.17-py3-none-any.whl (31.7 kB view details)

Uploaded Python 3

File details

Details for the file sbgm-0.0.17.tar.gz.

File metadata

  • Download URL: sbgm-0.0.17.tar.gz
  • Upload date:
  • Size: 23.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for sbgm-0.0.17.tar.gz
Algorithm Hash digest
SHA256 36cf53382436611a17b363eff6bd9b86f28253fc887e2313869a2f515d9c603b
MD5 f54237d2b98f5f219cdf704030f04278
BLAKE2b-256 6f2f5eea88aae3e369b62b91f57738271c598c74c68d6f6e58bb2e043ac7923a

See more details on using hashes here.

File details

Details for the file sbgm-0.0.17-py3-none-any.whl.

File metadata

  • Download URL: sbgm-0.0.17-py3-none-any.whl
  • Upload date:
  • Size: 31.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for sbgm-0.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 de84cee11998b3a1b0dd869bcfc1b8af90fb40ba8a90a39825e3fddc0a9cf346
MD5 98943ba05c36bb52f43266a0c7dcc4c6
BLAKE2b-256 950cb904ffe41e8c5e8368d8c73813c81478b51cf70684eb1480e8d6bb457cd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page