Skip to main content

PECA2 gene regulatory network construction for single-cell data

Project description

scPECA

Introduction

This is a python version of PECA2 gene regulatory network construction software designed for single-cell data. It has a faster running speed and a lower memory footprint.

Installation

pip install scPECA==2.0

Run scPECA

Input

scPECA requires to input the paired (sc)RNA-seq and (sc)ATAC-seq data, and it provides data pre-processing in some formats. (Pre-processing can also be done manually by the user)

Format 1

Paired bulk RNA-seq and ATAC-seq count data

sample_name_RNA.txt

gene1 10
gene2 3

sample_name_ATAC.txt

chr1_10000_10100 1
chr1_20000_20100 0

Format 2

scRNA-seq count data and scATAC-seq count data within the same cluster without meta information

sample_name_scRNA.csv

barcode1 barcode2
gene1 1 19
gene2 3 6

sample_name_scATAC.csv

barcode1 barcode2
chr1_10000_10100 1 0
chr1_20000_20100 0 1

Format 3

scRNA-seq count data and scATAC-seq count data with meta information

sample_name_scRNA.csv

barcode1 barcode2
gene1 1 19
gene2 3 6

sample_name_scRNA_meta.csv

barcode1 celltype1
barcode2 celltype2

sample_name_scATAC.csv

barcode1 barcode2
chr1_10000_10100 1 0
chr1_20000_20100 0 1

sample_name_scATAC_meta.csv

barcode1 celltype1
barcode2 celltype2

Format 4

h5ad scRNA file with cell label

Prior files

If you are the first time to run scPECA, please download the prior files as follows,

from scPECA.prior_install import figshare_download
import os 
import scPECA
figshare_download(os.path.join(os.path.dirname(scPECA.__file__),'Prior.tar.gz'))

Run example

from scPECA.scPECA_main import scPECAclass
import scPECA
import os

# example 1
pkg_path = os.path.dirname(scPECA.__file__)
# demo data path
data_path = os.path.join(os.path.dirname(scPECA.__file__), 'Cones')
demo = scPECAclass(data_path, 'Cones', 'hg38', pkg_path) # Create a scPECA class
demo.RNA_process(2) # Format 2 RNA data processing
demo.ATAC_process(2) # Format 2 ATAC data processing
demo.network('Cones', data_path) # PECA2 GRN construction

# example 2
data_path = os.path.join(os.path.dirname(scPECA.__file__), '4cellline')
demo = scPECAclass(data_path, '4cellline', 'hg38', pkg_path)
demo.RNA_process(3) 
demo.ATAC_process(3)

# example 3
data_path = os.path.join(os.path.dirname(scPECA.__file__), 'paul15')
demo = scPECAclass(data_path, 'paul15', 'mm10', pkg_path)
demo.RNA_process(4, 'paul15_clusters') 

The details of other optional parameters can be viewed in python. All sample data has been downloaded with the software package.

Output

sample_name_network.txt

TFTG_regulationScore.txt

GRN Analysis Tools (example cell line: K562)

  1. TFTG co-module analysis:
demo.co_module(celltype, num_clusters)

Result: TFmodule_result.txt, TGmodule_result.txt, co_module.png

image

  1. TF layering
demo.tf_layer(celltype)
demo.top_tf_layer_plot(celltype)

Result: TF_layer.txt, top_TF_layer_graph.png

image

System & Software Requirements

System: linux

Linux software: Homer

Python package: pybedtools, ismember, scipy, numpy_groupies,

Considerations

  1. RNA data preprocessing currently supports only hg38, hg19, mm10, mm9 genomes.
  2. pybedtools may not support the latest version of python and will require the creation of a new environment.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scPECA-2.0.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

scPECA-2.0-py3-none-any.whl (13.0 MB view details)

Uploaded Python 3

File details

Details for the file scPECA-2.0.tar.gz.

File metadata

  • Download URL: scPECA-2.0.tar.gz
  • Upload date:
  • Size: 14.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for scPECA-2.0.tar.gz
Algorithm Hash digest
SHA256 41c4468ab93c7cd7ed63ef929428fc127bc8fb2f8854c2cd8a0c64668fd4fbad
MD5 2ce2e699d443c64adde58997fc764e5f
BLAKE2b-256 109fb5c7af25267b6e325b8dd07620891ac776ba673573e9fb8e7016c49aed10

See more details on using hashes here.

File details

Details for the file scPECA-2.0-py3-none-any.whl.

File metadata

  • Download URL: scPECA-2.0-py3-none-any.whl
  • Upload date:
  • Size: 13.0 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for scPECA-2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 84da630dc5ac4a1a802fdba7df3a89801675a0f34175a455d124830523e779c0
MD5 7335ec7db4ea2ece48578a00da536f5e
BLAKE2b-256 24c8eea1b75f0474c80707db7f707a37ada1f572f4130c57c83014922eefa843

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page